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Abstract

Using supersymmetric localization we compute the free energy and BPS Wilson
loop vacuum expectation values for planar maximally supersymmetric Yang-
Mills theory on Sd in the strong coupling limit for 2 ≤ d < 6. The same
calculation can also be performed in supergravity using the recently found
spherical brane solutions. We find excellent agreement between the two sets
of results. This constitutes a non-trivial precision test of holography in a non-
conformal setting. The free energy of maximal SYM on S6 diverges in the
strong coupling limit which might signify the onset of little string theory. We
show how this divergence can be regularized both in QFT and in supergravity.
We also consider d = 7 with a small negative ’t Hooft coupling and show
that the free energy and Wilson loop vacuum expectation value agree with the
results from supergravity after addressing some subtleties.
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1 Introduction

Supersymmetric localization is a powerful tool to study the dynamics of strongly
coupled supersymmetric QFTs which has been efficiently exploited in a variety of
examples [1]. A particularly interesting application of this technique is the study
of the correspondence between gauge theories and their gravity duals. In many
situations the calculation of supersymmetric observables in the field theory reduces
to an evaluation of a matrix integral which can then be studied in the planar limit
with saddle point techniques. In the cases when the supersymmetric theory has a
known gravitational dual this provides a fruitful avenue to quantitatively test the
details of the AdS/CFT correspondence.

It is natural to consider questions on the interface of holography and supersym-
metric localization for conformal theories with maximal supersymmetry, like four-
dimensional N = 4 SYM and the three-dimensional ABJM theory, on the round
sphere. Indeed this was pursued extensively and many important developments are
summarized in [1]. These two examples also offer the possibility to break confor-
mal invariance and part of the supersymmetry while still maintaining calculational
control both in the field theory [2, 3, 4, 5] and the supergravity side [6, 7, 8, 9, 10].
This collection of results provides a non-trivial precision test of holography away
from the conformal limit. Our goal in this paper is to extend this success to other
non-conformal theories with maximal supersymmetry arising from string theory.

The theories we consider are maximally supersymmetric gauge theories on the
round sphere, Sd. In dimension 2 ≤ d ≤ 7 these theories are not conformal for d 6= 4
and admit a Lagrangian which preserves 16 supercharges [11, 12]. Supersymmetric
localization reduces the path integral of the theory to an ordinary matrix integral.
Despite this drastic simplification the explicit evaluation of this integral is still non-
trivial due to the presence of non-perturbative effects like instantons. When the
rank of the gauge group is large it is believed that these non-perturbative effects are
suppressed and the matrix integral becomes more tractable. As we discuss in detail
below, for all values of d it is possible to compute the free energy and the vacuum
expectation values (VEV) of a supersymmetric Wilson loop using this matrix model.1
A further simplification occurs in the limit where the dimensionless ’t Hooft coupling,
defined as

λ ≡ Rd−4g2
YMN (1.1)

where R is the radius of Sd, is large. In this case the results can be written in
analytic form and can be formally analytically continued even to non-integer values
of d.

The gravity dual of these maximally supersymmetric Yang-Mills theories
(MSYM) on flat space is given by the near horizon geometry of the Dp-brane so-
lutions in supergravity with d = p+ 1 [14]. To study the MSYM theories on Sd one

1See [13] for calculations of the free energy on Sd of QFTs without gauge fields.
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needs a generalization of these solutions to Dp-branes with spherical worldvolume.
Indeed, such spherical brane solutions exist and were constructed explicitly in [15].2
Equipped with these supergravity backgrounds we can apply the tools of holography
and compute the free energy and Wilson loop VEV at large λ. The holographic free
energy is calculated by evaluating the on-shell action of the supergravity solution
while the Wilson loop VEV is computed by first finding an appropriately embedded
probe string and then computing the Nambu-Goto action on-shell. Both of these
calculations can be performed explicitly and the results are in agreement with the
ones obtained by supersymmetric localization.

We encounter several subtleties in our calculations. In the supersymmetric local-
ization analysis the large N limit of the matrix model admits a simple saddle point
evaluation only for 3 < d < 6. For values of d outside of this range we have to
perform a careful analytic continuation. For the case of d = 3, one would naively ex-
pect that there would be no dependence on λ since the Yang-Mills action is Q-exact
in three dimensions. However, the contribution from the localization determinant
diverges for d = 3 with N = 8 supersymmetry, offsetting the Q-exactness of the
action. By setting d = 3 + ε and sending ε to zero we find that the free-energy is
indeed independent of λ, but the Wilson loop VEV depends nontrivially on λ. We
then show that these results can be reproduced in supergravity at large λ, including
nontrivial pre-factors. While the strong coupling results can be obtained by analyt-
ically continuing the results found for 3 < d < 6, we can actually do more and find
the Wilson loop VEV in terms of a simple function of λ which is valid for all values
of the coupling.

For d = 2 another subtlety arises. The standard extension of a N = (2, 2)
vector multiplet on the sphere is Q-exact [17], but this action cannot be extended
to 16 supersymmetries by adding extra fields. However, there is another action that
preserves supersymmetry that can be extended and is not Q-exact. This then leads to
nontrivial dependence on λ. Again we can analytically continue our results down to
d = 2 to find the free energy and the Wilson loop VEV. We show that supergravity
reproduces the Wilson loop VEV and, with an appropriate counterterm, can also
reproduce the free energy,

At d = 5 we reproduce previous results from the literature for the free energy and
Wilson loop [18, 19, 20]. In this case there is a well-known mismatch between the
free energy coming from localization and that coming from the on-shell action of the
M theory dual of the six-dimensional (2, 0) theory with one direction compactified
on a circle. In this paper we consider the IIA supergravity dual directly and show
that one can add counterterms which is allowed because of the partial breaking
of the R-symmetry and which can cancel the mismatch. This is reminiscent of the
difficulties encountered in [21] in the context of holographic renormalization for AdS5

2See also [16] for other constructions of supersymmetric solutions sourced by curved Euclidean
branes.
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with an S3×S1 boundary which ultimately lead to the introduction of non-covariant
counterterms.

The cases d = 6 and d = 7 are particularly subtle due to the appearance of
divergences in the matrix model. For d = 6 the divergence appears to be severe and
perhaps signals the onset of the (1, 1) little string theory which is the UV completion
of maximal SYM in six dimensions. Nevertheless, we find a regularization procedure
of the matrix model which leads to finite results for both the free energy and the
Wilson loop VEV.

For d = 7 we again observe a divergence in the matrix model which can be
handled using a more standard UV regularization. At weak ’t Hooft coupling the
matrix model is similar to the lower dimensional cases. As we increase the regularized
λ, or equivalently decrease λ−1, one finds that we can smoothly continue λ−1 through
zero and take it to large negative values. It is in this regime with small negative ’t
Hooft coupling that we can compare to supergravity, where we find a match for
both the free energy and the Wilson loop VEV. This fits nicely with an observation
made by Peet and Polchinski [22] who speculated that there were two weakly coupled
theories in seven dimensions, the usual weakly coupled supersymmetric gauge theory
and some other weakly coupled theory that is described by supergravity. Here we
see that the supergravity dual is still a gauge theory, but with a flipped sign for the
coupling. Furthermore, since the coupling is weak, albeit negative, the saddle point
is sharply peaked, even for finite N . This parallels the observation in [14] that the
supergravity description can be trusted even for small N .

The analysis on the gravity side for all d 6= 4 goes beyond the realm of the usual
holographic dictionary. The spherical brane solutions for d 6= 4 are not asymptoti-
cally locally AdS and therefore there is no generally established holographic renor-
malization procedure. Despite this obstacle we are able to adapt the results in [23, 24]
to our setting and construct appropriate counterterms in supergravity which lead to
a finite on-shell action for the spherical brane backgrounds and the probe strings.
The approach of [23, 24] is however not applicable for d = 6 due to the linear dilaton
characteristic of the little string theory. Inspired by the regularization procedure in
the matrix model analysis and the results in [25, 26, 27] we are able to propose a way
to cancel the divergences appearing in the spherical D5-brane solution and obtain
an agreement with the results from supersymmetric localization.

In the next section we summarize the maximally supersymmetric Yang-Mills the-
ory on Sd and show how to compute its free energy and the VEV of a BPS Wilson
loop using supersymmetric localization. In Section 3 we summarize the spherical
brane solutions and the holographic renormalization procedure we use. Section 4
is devoted to a cases by cases analyses of the QFT and supergravity evaluation of
the free energy and the Wilson loop VEV for 2 ≤ d ≤ 7. We conclude in Section 5
with a short discussion. In the appendices we summarize and further explain many
technical results used throughout the paper.
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2 Field theory and supersymmetric localization

The d-dimensional maximally supersymmetric Yang-Mills theory (MSYM) can be
put on the round sphere Sd while preserving all 16 supercharges. If d 6= 4 then
MSYM is not superconformal and the fact that one can place the theory on a sphere
and still preserve supersymmetry is non-trivial and can be done only for d ≤ 7, see
[11] and [12]. The curvature of the sphere induces new couplings in the MSYM action
which break the SO(1, 9 − d) R-symmetry of the theory in flat Euclidean space to
SU(1, 1)× SO(7− d). One advantage of placing MSYM on a sphere is that one can
employ the powerful techniques of supersymmetric localization to calculate certain
physical observables exactly, see [1] for a review. This was pursued in [12, 28, 29]
and we summarize and extend these results below.

2.1 Localization for MSYM on Sd

Our starting point is the MSYM Lagrangian on Sd with radius R, which is given by3
[11, 12]

L = − 1

2g2
YM

Tr

(
1

2
FMNF

MN −Ψ /DΨ +
(d− 4)

2R
ΨΛΨ +

2(d− 3)

R2
φAφA

+
(d− 2)

R2
φiφi +

2 i

3R
(d− 4)[φA, φB]φCεABC −KmK

m

)
.

(2.1)

The indices M,N = 0, . . . 9 arise from dimensional reduction of ten-dimensional
super Yang-Mills. In the reduction the ten-dimensional gauge field divides into a
d-dimensional gauge field and 10 − d scalar fields. Accordingly, the M,N indices
are broken up into the coordinate indices on Sd, µ, ν = 1, . . . d, and scalar indices
I, J = 0, d + 1, . . . 9. The scalar indices themselves split further into indices A,B =
0, 8, 9 and i, j = d + 1, . . . 7. The field-strengths with components along the scalar
dimensions are FµI = DµφI and FIJ = −i[φI , φJ ]. The scalar field φ0 originates from
the time-like component of the ten-dimensional gauge field, and so has a wrong-sign
kinetic term. The Ψ are 16 component real chiral spinors satisfying Γ11Ψ = Ψ and
we have defined Λ = Γ089. There are also 7 auxiliary fields Km which allow for an
off-shell formulation of supersymmetry.

The terms in the action proportional to R−1 and R−2 break the R-symmetry
from SO(1, 9−d) to SU(1, 1)×SO(7−d), except for d = 4 and d = 7. Note that the
Lagrangian L is obtained as a deformation of the dimensional reduction of the ten-
dimensional SYM Lagrangian in Lorentzian signature and we have not Wick rotated
the ten-dimensional time coordinate.

3Here we are replacing the Yang-Mills coupling g2
YM in [28] by 2g2

YM to match the conventions
used in supergravity.
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The Lagrangian in (2.1) is invariant under the off-shell supersymmetry transfor-
mations

δεAM = εΓMΨ ,

δεΨ =
1

2
ΓMNFMNε+

2(d− 3)

d
ΓµAφA∇µ ε+

2

d
Γµiφi∇µ ε+Kmνm ,

δεK
m = −νm /DΨ +

(d− 4)

2R
νmΛΨ , (2.2)

where ε is a bosonic 16 component real chiral spinor that satisfies the conformal
Killing spinor equation

∇µε =
1

2R
ΓµΛε . (2.3)

The νm are seven commuting spinors that satisfy νmΓMε = 0, νmΓMνn = δnmεΓMε
[30, 12].

The theory with Lagrangian (2.1) can be localized using a particular supercharge
[30, 12]. Given any ε satisfying (2.3) we can define a vector field vM ≡ εΓMε that
automatically satisfies vMvM = 0. We then choose ε so that v0 = 1, v8,9 = vi = 0,
and along one particular equator of the sphere vµvµ = 1. We will later take the
large N limit where it is assumed that instantons can be ignored [2, 7]. In this
situation the theory localizes onto the locus where Aµ = 0, φI = 0 for I 6= 0,
∇µφ

0 = 0, and Km = − (d−3)
R φ0(νmΛε). Wick rotating the time direction leads to the

transformations L → −iL, φ0 → iφ0, andKm → iKm. After defining a dimensionless
N × N Hermitian matrix σ ≡ Rφ0, the partition function for general d reduces to
[12, 28, 29]

Z =

∫
Cartan

[dσ] exp

(
− 4π

d+1
2 Rd−4

g2
YMΓ

(
d−3

2

)Tr σ2

)
Z1−loop(σ) + instantons . (2.4)

Z1−loop(σ) is the contribution of the Gaussian fluctuations about the localized fixed
point, and when combined with the Vandermonde determinant is given by

Z1−loop(σ)
∏
γ>0

〈γ, σ〉2 =
∏
γ>0

∞∏
n=0

(
n2 + 〈γ, σ〉2

(n+ d− 3)2 + 〈γ, σ〉2

) Γ(n+d−3)
Γ(n+1)Γ(d−3)

, (2.5)

where γ are the positive roots for the gauge group. If d < 6 then (2.5) is convergent.
For d ≥ 6 it diverges and will need to be regularized. For the rest of this section
we assume that d < 6. The d = 6 and d = 7 cases will be considered separately.
Notice that in the matrix model defined by (2.4), the integration over σ is restricted to
adjoint matrices in the Cartan of the gauge group. We can therefore fully parametrize
σ by its eigenvalues σi.
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We now take the large N limit and drop the instanton contributions. The parti-
tion function is now dominated by a saddle point whose equations are given by

C1N

λ
σi =

∑
j 6=i

G16(σij) , C1 ≡
8π

d+1
2

Γ
(
d−3

2

) , (2.6)

where λ is the dimensionless ’t Hooft coupling defined in (1.1) and σij ≡ σi − σj.
The kernel G16(σ) is given by [28]

iG16(σ)

Γ(4− d)
=

Γ(−iσ)

Γ(4−d− iσ)
− Γ(iσ)

Γ(4−d+ iσ)
− Γ(d−3− iσ)

Γ(1− iσ)
+

Γ(d−3 + i σ)

Γ(1 + i σ)
. (2.7)

The behavior of the kernel G16(σ) is shown in Figure 1 for various values of d. Notice
that in the figure we are not restricting the dimension d to be an integer. Indeed the
kernel G16(σ) is a meromorphic function of d.

For small eigenvalue separations where |σij| � 1, the kernel has the weak coupling
behavior

G16(σij) ≈
2

σij
, (2.8)

which is independent of d. However, we are interested in strongly coupled theories
where λ� 1. In this case the central potential for the eigenvalues is relatively weak
so the repulsive force coming from the kernel pushes the eigenvalues far apart for
d < 6. Hence, for generic i and j we have that |σij| � 1. In this range (2.7) is
approximately

G16(σij) ≈ C2|σij|d−5sign(σij) , (2.9)

where
C2 = 2(d− 3)Γ(5−d) sin π(d−3)

2
. (2.10)

The saddle point equation then becomes

C1

λ
Nσi = C2

∑
j 6=i

|σi − σj|d−5sign(σi − σj) . (2.11)

Notice that C2 in (2.10) has a pole at d = 6 and a double zero at d = 3. This restricts
our general analysis to the range 3 < d < 6. We will return to d = 2, 3 in Section 4.

We next define the eigenvalue density ρ(σ),

ρ(σ) ≡ N−1

N∑
i=1

δ(σ − σi) . (2.12)

Assuming strong coupling, the saddle point equation (2.11) for 3 < d < 6 becomes

C1

λ
σ = C2

∫ b

−b
− dσ′ρ(σ′)|σ − σ′|d−5sign(σ − σ′) , (2.13)
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d=3.5

d=4

d=5

d=5.5

d=5.7

-1.5 -1.0 -0.5 0.5 1.0 1.5
σ

-20

-10

10

20

G16(σ)

Figure 1: The kernel G16(σ) for various values of d. For |σ| � 1 the curves approach
the same weak coupling behavior. For |σ| > 1 they approach different strong coupling
behavior.

where b, given below, sets the endpoints of the eigenvalue distribution. Taking the
large N limit and using the result in (A.1), we see that (2.13) is satisfied if the density
has the form

ρ(σ) =
C1 sin π(d−1)

2

πλC2(d− 5)(b2 − σ2)(d−5)/2
=

2π
d+1

2

πλΓ(6− d)Γ(d−1
2

)(b2 − σ2)(d−5)/2
. (2.14)

Using (A.2), we can properly normalize the density by setting the eigenvalue endpoint
b to

b = (4π)
d+1

2(d−6)

(
32λΓ

(
8−d

2

)
Γ
(

6−d
2

)
Γ
(
d−1

2

)) 1
6−d

. (2.15)

To verify the validity of the strong coupling approximation in (2.9) we can test
the solutions to the saddle point equation numerically using the full function G16(σij)
defined in (2.7). As can be seen from the graphs in Figure 2, the numerical solutions
at strong coupling are in very good agreement with the eigenvalue density (2.14) in
dimensions 3 < d < 6.
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-4 -2 2 4
σ

0.02

0.04

0.06

0.08

0.10

0.12

ρ(σ)

(a) d = 4.5, N = 80, λ = 350

-10 -5 0 5 10
σ

0.01

0.02

0.03

0.04

0.05

ρ(σ)

(b) d = 4.98, N = 100, λ = 500

-10 -5 0 5 10
σ

0.02

0.04

0.06

0.08

ρ(σ)

(c) d = 5.5, N = 80, λ = 100

Figure 2: The eigenvalue density obtained from the numerical solutions of the full
saddle point equations (2.6) with various choices of parameters. The dashed lines
represent the eigenvalue density in (2.14).

2.2 The free energy and the BPS Wilson loop VEV from localization

In the strong coupling regime the large N limit of the free energy, F = − logZ, is
given by

F = N2

(
C1

2λ

∫ b

−b
dσρ(σ)σ2 − C2

2(d− 4)

∫ b

−b
dσρ(σ)

∫ b

−b
dσ′ρ(σ′)|σ − σ′|d−4

)
. (2.16)

Dividing through by the N2 factor and performing the second integral over σ by
parts gives

F

N2
=

C1

2λ

∫ b

−b
dσρ(σ)σ2 − C2f(b)

d− 4

∫ b

−b
dσ′ρ(σ′)|b− σ′|d−4

+
C2

2

∫ b

−b
dσf(σ)

∫ b

−b
dσ′ρ(σ′)|σ − σ′|d−5 , (2.17)

where f(σ) is defined in (A.4) and we used the fact that it is an odd function. Using
(2.13) in the last integral and integrating by parts we find

F

N2
=
C1

4λ

∫ b

−b
dσρ(σ)σ2 +

C1

2λ
f(b)b2 − C2f(b)

d− 4

∫ b

−b
dσ′ρ(σ′)|b− σ′|d−4 . (2.18)

The remaining integrals are evaluated in (A.5) and (A.6). Using these, as well as
f(b) = 1/2 and the expression for b in (2.15), we can simplify the free energy to

F

N2
= −C1

2λ

(6− d)

(8− d)(d− 4)
b2

= − 16π
(d+1)(4−d)

2(6−d) (6− d)

λΓ(d−3
2

)(8−d)(d−4)

(
λ
4
Γ
(

8−d
2

)
Γ
(

6−d
2

)
Γ
(
d−1

2

)) 2
6−d

. (2.19)
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This is our final result for the free energy as a function of d in the strong coupling
limit.

A 1
2
-BPS Wilson loop W wraps the equator of Sd and has a VEV given by

〈W 〉 =
〈

Tr
(
Pei

∮
dxµAµ+i

∮
ds nAφ

A
)〉

(2.20)

where nAnA = 1 and nA is fixed in its direction. If the loop is chosen to be invariant
with respect to the same supersymmetry used to localize the partition function then
the Wilson loop can also be localized. For our choice of supersymmetry this sets
n0 = 1 [30, 12] and in the large N limit the Wilson loop becomes

〈W 〉 =
〈

Tr
(
Pei

∮
ds·φ0

)〉
≈
∫ b

−b
dσρ(σ)e2πσ = (πb)

d−6
2 Γ

(
8−d

2

)
I 6−d

2
(2πb) , (2.21)

where we used the eigenvalue density in (2.14) to evaluate the integral. The I 6−d
2

(2πb)

are modified Bessel functions which reduce to spherical Bessel functions when d is
odd.

The result in (2.21) is valid for any value of λ in d = 4. In section 4 we will
show that this is also true for d = 3. For all other d the result in (2.21) is valid only
for large λ. In comparing to supergravity we will be mainly interested in the strong
coupling limit anyway. In this case the Wilson loop VEV is generally determined by
the highest eigenvalue b, where we find

〈W 〉 ∼ e2πb . (2.22)

In the next section we discuss how one can obtain these results for the free energy
and the Wilson loop VEV from supergravity.

3 Supergravity

In this section we summarize the spherical Dp-brane type II supergravity solutions
found in [15]. These solutions are expected to provide a holographic dual to the
MSYM theories on Sd discussed above. Note that we use p and d = p + 1 in-
terchangeably throughout the rest of this paper. We then present a roadmap to
computing the holographic free energy and 1

2
-BPS Wilson loops VEV using these su-

pergravity solutions. The explicit comparison between field theory and supergravity
will be carried out in Section 4.

3.1 Spherical branes

In [15] type II supergravity solutions preserving sixteen supercharges, corresponding
to the backreaction of Dp-branes with a spherical worldvolume, were constructed.
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These backgrounds are found by starting with (p+ 2)-dimensional maximal gauged
supergravity and subsequently lifting the solutions up to type IIA/B supergravity. A
short discussion of the gauged supergravity construction can be found in Appendix B,
see [15] for more details. The type II string frame metric for these backgrounds is
given by4

ds2
10 =

eη√
Q

(
ds2

p+2 +
e

2(p−3)
6−p η

g2

(
dθ2 + P cos2 θ dΩ̃2

2 +Q sin2 θ dΩ2
5−p

))
. (3.1)

Here g is the gauge coupling of the (p+ 2)-dimensional supergravity theory and can
be related to the ten-dimensional string theory constants as

(2π`sg)p−7 =
gsN

2πV6−p
, (3.2)

where N is the number of Dp-branes, gs is the string coupling, `s is the string length,
and Vn = 2π(n+1)/2/Γ(n+1

2
) is the volume of the unit radius n-sphere. In (3.1) dΩ2

5−p

is the metric on the unit radius (5 − p)-sphere, and dΩ̃2
2 is the metric on the unit

radius two-dimensional de Sitter space. Together with the coordinate θ these form a
squashed (8− p)-dimensional de Sitter space. The (p+ 2)-dimensional factor of the
metric, ds2

p+2, is given by

ds2
p+2 = dr2 + e2A(r)dΩ2

p+1 , (3.3)

and dΩ2
p+1 is the metric on the round (p + 1)-sphere wrapped by the Dp-branes.

The function A(r) is determined in terms of the scalars η(r), X(r), and Y (r) by an
algebraic equation as shown in Appendix B. The squashing functions P and Q are
determined in terms of the gauged supergravity scalars as

P =

{
X
(
X sin2 θ + (X2 − Y 2) cos2 θ

)−1 for p < 3 ,

X
(

cos2 θ +X sin2 θ
)−1 for p > 3 ,

(3.4)

Q =

{
X
(

sin2 θ +X cos2 θ
)−1 for p < 3 ,

X
(
X cos2 θ + (X2 − Y 2) sin2 θ

)−1 for p > 3 .
(3.5)

The dΩ2
p+1 and dΩ2

5−p factors in the metric realize the SO(p+2)×SO(6−p) spacetime
and compact R-symmetries of the maximal SYM theory on the (p+ 1)-sphere. The
non-compact SU(1, 1) factor of the R-symmetry group on the other hand is realized
as the isometry group of the two-dimensional de Sitter space with metric

dΩ̃2
2 = −dt2 + cosh2 t dψ2 , (3.6)

4In this paper we use η to denote the scalar λ in [15].
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where ψ has a period of 2π.5 The ten-dimensional dilaton has the following form,

e2Φ = g2
se

p(7−p)
6−p η P Q

1−p
2 , (3.7)

and the non-vanishing type II supergravity form fields are given by

B2 = e
p

6−pη
Y P

g2X
cos3 θ vol2 , (3.8)

C5−p = ie−
p

6−pη
Y Q

gsg5−pX
sin4−p θ vol5−p , (3.9)

C7−p =
i

gsg7−p

(
ω(θ) + P cos θ sin6−p θ

)
vol2 ∧ vol5−p . (3.10)

Here vol5−p and vol2 refer to the volume forms on dΩ2
5−p and dΩ̃2

2, respectively. The
function ω(θ) in (3.8) is defined such that in the UV the exterior derivative of C7−p
gives the volume form on the (8− p)–dimensional de Sitter space, namely

d

dθ

(
ω(θ) + cos θ sin6−p θ

)
= (7− p) cos2 θ sin5−p θ . (3.11)

Figure 3: The regular geometries interpolate between flat Euclidean Dp-branes in
the UV and Rp+2 in the IR.

For a fixed value of p the scalars η(r), X(r), and Y (r) can be found by solving
the BPS equations presented in Appendix B. In the UV, i.e. for large values of
r, the scalars X and Y take the values X = 1 and Y = 0 such that the solution
asymptotically approaches the flat brane domain wall solution. In the IR region
on the other hand, the solution is regular and the scalar fields approach a finite

5As explained in [15], for p = 1, 2 an analytic continuation must be performed whereby θ
becomes timelike and ψ spacelike such that the SU(1, 1) symmetry is realized as the isometry of
the hyperbolic plane.
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constant value. These IR values for the scalars can be found as the critical points of
the superpotential (B.8) and are given by:

XIR = p
3
, YIR = ±2(p−3)

3
, for p < 3 ,

XIR = p
(6−p)(p−2)

, YIR = ± 2(p−3)
(6−p)(p−2)

, for p > 3 .
(3.12)

Even though X and Y approach fixed values in the IR, the scalar η can take any
constant value ηIR. A schematic form of the spherical brane solutions is depicted in
Figure 3.

An important ingredient in relating the supergravity results below to the ones
found above using supersymmetric localization is the definition of ’t Hooft coupling.
In our conventions, the Dp-brane tension and the Yang-Mills coupling constant are
given in terms of the string coupling as

µp =
2π

(2π`s)p+1
, g2

YM =
(2π)2gs

(2π`s)4µp
=

2πgs
(2π`s)3−p . (3.13)

The dimensionless holographic ’t Hooft coupling, λhol, is defined by

λhol(E) = g2
YMNE

p−3
hol , (3.14)

where N is the number of Dp-branes and g2
YM is defined in (3.13). The quantity

Ehol is a finite energy scale defined in an appropriate way through the supergravity
solution. Since the supergravity backgrounds of interest here are not asymptotically
locally AdS it is not straightforward to define this quantity. A reasonable choice is
to define it as the inverse of the effective radius Reff of the (p + 1)-sphere dΩ2

p+1 in
(3.1), i.e.

Reff = Q−
1
4 eA+ η

2 , (3.15)

and multiply it by the ten-dimensional dilaton eΦ (3.7). This definition amounts to
the following result6

Ep−3
hol = R3−p

eff

eΦ

gs
= e(3−p)Ae

9−p
6−pη

P 1/2

Q1/2
. (3.16)

This energy scale is finite in the UV limit r → ∞ and thus we propose to identify
the holographic ’t Hooft coupling in (3.14) by evaluating (3.16) in the UV where

A→ (p− 9)

(6− p)(3− p)
η + const . (3.17)

The constant in this equation is fixed by regularity of the full supergravity back-
ground in the IR, it can therefore not be deduced directly by an UV analysis of

6We divide by a factor of gs since we have already included a factor of gs in the definition of
g2

YM in (3.13).
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the BPS equations. Using that limr→∞ P (r) = limr→∞Q(r) = 1 we arrive at the
following explicit result7

λhol ≡
2πgsN

(2π`s)3−p e(3−p)Ae
9−p
6−pη

∣∣∣∣
r→∞

. (3.18)

We will sometimes express λhol in terms of the supergravity gauge coupling g using
(3.2). We note that the expression (3.18), which allows us to find a match between
supergravity and field theory, does not agree with the one proposed in [23] for all
values of p.

3.2 Holographic free energy

The holographic free energy of the spherical Dp-brane solutions is given by the on-
shell action in (p + 2) dimensions. This action can be derived from the (p + 2)-
dimensional gauged supergravity, see [15], and takes the form

S =
1

2κ2
p+2

∫
dp+2x

√
g

{
R +

3p

2(p− 6)
|dη|2 − 2Kτ τ̃ |dτ |2 − V

}
, (3.19)

where the potential V is given in Appendix B in terms of a superpotential W . The
(p+ 2)-dimensional Newton constant can be expressed as8

κ2
p+2 =

(2π`s)
8g2
s

8π

Γ
(

9−p
2

)
π

9−p
2

g8−p . (3.20)

Evaluating the action in (3.19) on the spherical brane solutions leads to divergences
arising from the UV region. Since for p 6= 3 the metric is not asymptotically locally
AdS one cannot apply the standard technology of holographic renormalization to
cancel these divergences systematically. As explained in [23, 24] a useful approach
to circumvent this impasse is to perform a conformal transformation of the metric to
the so-called dual frame. This changes its UV asymptotics to the locally AdS form
and for the solutions of interest here is achieved by the following rescaling

gµν = e2aηg̃µν , where a =
p− 3

6− p
. (3.21)

Note that the case p = 6 needs to be treated separately. For p = 3 the background is
asymptotically AdS5 and no rescaling is needed. In terms of this transformed metric,

7An alternative way to obtain (3.18) is to define the running gauge coupling, as it appears in
the probe action for Dp-branes, by g2

YM = 2πeΦ/(2π`s)
3−p. Then the energy scale is defined by

E = R−1
eff . When these two expressions are inserted into (3.14) and evaluated at r →∞ we obtain

(3.18).
8This expression is derived in some detail in Appendix B.1.
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the action takes the form

S =
1

2κ2
p+2

∫
dp+2x

√
g̃ epaη

{
R̃ +

(
3p

2(p−6)
+ a2p(p+ 1)

)
|dη2| − 2Kτ τ̃ |dτ |2 − e2aηV

}
.

(3.22)
In this frame the metric is asymptotically AdS and we can use the standard frame-
work of holographic renormalization to obtain the holographic counterterm action.
When transformed to the dual frame the Gibbons-Hawking boundary term is given
by

SGH =
1

κ2
p+2

∫
dp+1x

√
h̃eapη(p+ 1) (A′ − aη′) . (3.23)

The remaining divergences should be cancelled by the standard curvature countert-
erms [31]. However, as discussed in [24], the coefficients of these counterterms should
be changed with respect to the ones in [31] and are determined by the constant
σ = 7−p

5−p . These infinite counterterms are built out of the induced boundary metric
in the dual frame, h̃µν and are given by

Sct,curv =
1

κ2
p+2

∫
dp+1x

√
h̃eapη

[
2σ − 1

σ − 1
g +

1

4g
Rh̃

+
1

16g3

σ − 1

σ − 2

(
Rh̃abR

ab
h̃
− σ

2(2σ − 1)
R2
h̃

)]
. (3.24)

The counterterms in the second line of (3.24) are only needed when p ≥ 4. Note that
this infinite counterterm analysis in the “dual frame” formalism is not applicable for
p = 5 and we will treat this case separately in Section 4.5.

Apart from these curvature counterterms we typically need additional infinite
counterterms coming from the scalar fields. For supersymmetric backgrounds we
can take advantage of the Bogomol’nyi trick, see for example [6, 7], to construct
these infinite counterterms. This amounts to adding the following counterterm built
out of the superpotential of the gauged supergravity theory

Sct,superpot =
1

2κ2
p+2

∫
dp+1x

√
h̃e(p+1)aη

√
eKWW

∣∣∣
Y→0

. (3.25)

This counterterm is precisely the one that appears when regularizing the free energy
of supergravity backgrounds with flat space boundary. There might be additional
counterterms appearing, such as conformal couplings of the scalars or terms depend-
ing on the scalar field Y , for more general solutions such as our spherical branes.
The precise form of these extra infinite counterterms terms as well as any potential
finite counterterms will be determined on a case-by-case basis in Section 4.
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3.3 Holographic Wilson loops

Now let us demonstrate how to compute supersymmetric Wilson loop vacuum expec-
tation values. The 1

2
-BPS Wilson loop captured by supersymmetric localization lies

on the equator of the (p+ 1)-sphere and is invariant with respect to the localization
supercharge if and only if it is aligned along the field theory scalar field φ0. This is
realized by a fundamental string wrapping the equator of Sd in the spherical brane
solutions and embedded in a specific way in the internal space. To understand this
in more detail we embed the internal space I8−p in R1,8−p,

XI : I8−p → R1,8−p :

{θ, t, ψ, ωi} 7→ {cos θ sinh t, cos θ cosh t sinψ, cos θ cosh t cosψ, sin θ YA} ,
(3.26)

where the YA give the standard embedding of the (5− p)-sphere in R6−p. This em-
bedding provides us with an explicit map from the internal space of our supergravity
solutions to the field theory scalars appearing in the Lagrangian (2.1), e.g. the scalars
φI can be identified with XI . Therefore, the BPS condition requires that the cor-
responding holographic Wilson loop lies at constant θ = 0 and cosh t = 0. This
implies that the holographic evaluation of the Wilson loop VEV must be performed
using the analytically continued fully Euclidean background. Indeed, this is how we
obtained a finite Newton constant in (3.20).

Figure 4: A string wrapping the equator of a (p+ 1)-sphere.

In the holographic context we are thus lead to study a probe fundamental string
wrapping the equator of the spherical brane as in Figure 4. The expectation value of
a Wilson line operator in the fundamental representation of the gauge group along
a contour C can be calculated holographically by evaluating the regularized on-shell
action of the probe string. More precisely,

log〈W (C)〉 = −SRen.
string , (3.27)

where SRen.
string is the renormalized on-shell action. The probe string is governed by the

Nambu-Goto action,

Sstring =
1

2π`2
s

∫
Σ

d2σ
√

detP [GMN ]− 1

2π`2
s

∫
Σ

detP [B2] , (3.28)
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where P [. . . ] denotes the pull-back of the bulk fields onto the string worldsheet Σ
parametrized by σ1 and σ2 and GMN is the ten-dimensional string frame metric.
In order to determine the Wilson loop expectation value we have to minimize the
string action, regularize it and finally evaluate it on-shell. In order to do this, we
parametrize the worldsheet by the coordinates σ1 = r and σ2 = ζ ∈ [0, 2π], use that
translations along ζ are a symmetry of the ten-dimensional solution described in
Section 3.1, and assume that the induced fields depend only on r. Since B2 has legs
only along the internal de Sitter part of the geometry we conclude that P [B2] = 0.
The induced metric on the other hand takes the form

P [ds2
10] =

eη√
Q

[(
1 +Gmn

∂Θm

∂r

∂Θn

∂r

)
dr2 + e2Adζ2

]
, (3.29)

where Gmn is the metric on the internal space and the functions Θm(r) describe
the profile of the string worldsheet in the internal directions. We can identify the
functions Θm with the 8−p coordinates (θ, t, ψ, ωi) with i = 1, . . . , 5−p. Minimizing
the string action is equivalent to minimizing

detP [GMN ] =
e2η+2A

Q

(
1 +Gmn

∂Θm

∂r

∂Θn

∂r

)
. (3.30)

Since we are performing the holographic computation for the ten-dimensional metric
analytically continued to Euclidean signature, the internal metric Gmn is positive
definite. All terms in the parentheses above are therefore manifestly positive and
thus can be minimized by setting each term to zero, i.e. by taking constant Θm. To
determine the exact position of the string in the internal space, i.e. the constant
values of Θm, we have to minimize the function

detP [GMN ]
∣∣
∂rΘm=0

=
e2η+2A

Q

=

{
e2η+2A

X

(
sin2 θ +X cos2 θ

)
for p < 3 ,

e2η+2A

X

(
X cos2 θ + (X2 − Y 2) sin2 θ

)
for p > 3 .

(3.31)

The extrema of these functions are at

θ =
nπ

2
for n ∈ Z . (3.32)

Since the range of θ is [0, π) there are only two inequivalent extrema: θ = 0 and θ =
π/2. However, as explained at the beginning of this section, only θ = 0 corresponds
to a Wilson loop which is BPS with respect to the localizing supercharge.9

We have thus arrived at the following probe string action (3.28)

Sstring =
1

`2
s

∫
dr
√

detP [GMN ] =
1

`2
s

∫
dreη+A , (3.33)

9See [9] for a similar analysis in the context of the four-dimensional N = 2∗ theory on S4.
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where we have already performed the integral over the great circle. This on-shell
string action diverges close to the UV boundary of the supergravity solution and we
have to renormalize it using appropriate covariant counterterms built out of the ten-
dimensional supergravity fields. This leads to the standard counterterm commonly
used to regularize string on-shell actions [9, 32]. In terms of the gauged supergravity
fields, this counterterm takes the form

Sstring,ct =
1

g`2
s

eA+ 3
6−pη

∣∣∣
r→∞

. (3.34)

Note that in addition to cancelling the divergences of the on-shell string action, in
some cases this counterterm contains a finite contribution which will prove to be
crucial for our analysis.

Before we discuss the various Dp-branes in detail it is worthwhile to study how
the Wilson line VEV scales with N and λhol. Using the scaling relation (3.14), we
find that

log〈W 〉 ∼ N0λ
1

(5−p)
hol . (3.35)

This scaling exactly matches the expectations from supersymmetric localization. In
addition the same scaling of the Wilson loop vacuum expectation value was found in
a holographic finite temperature setting in [33].

4 Free energy and Wilson loop VEVs for spherical Dp-branes

After discussing the general framework for computing the free energy and Wilson
loop expectation values, both from a supergravity and field theory point of view, we
proceed with a case-by-case study of the different values of p, starting at p = 1 and
working our way up to p = 6. For D5- and D6-branes some aspects of the general
analysis above do not apply and we treat these two cases in some more detail. To
avoid confusion, in this section we will denote the QFT ’t Hooft coupling in (1.1) by
λQFT to explicitly distinguish it from the one used in supergravity denoted by λhol.

4.1 D1-branes

4.1.1 Field theory

In Section 2 we performed a general strong coupling analysis of the matrix model
of [28] at large N . Strictly speaking, the matrix model is only well defined for
dimensions in the interval 3 < d < 6. To go below this interval let us first try
returning to the general form of the kernel in (2.7). If we set d = 2 we find that the
kernel takes the particularly simple form,

G16(σ) =
4

σ + σ3
. (4.1)
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A matrix model with this kernel was previously analyzed in [34] where the free
energy was derived parametrically in terms of complete elliptic integrals. However,
in our case the central potential has a negative sign at d = 2, which leads to many
subtleties. In particular a straightforward analytic continuation of the results in [34]
gives a complex free energy in terms of λQFT.

Instead we propose to analytically continue the dimension to d = 2 in the expres-
sions for the free energy and Wilson loop VEV in (2.19) and (2.21). Both the free
energy and Wilson loop are expressible in terms of the eigenvalue endpoint, which
upon substituting d = 2 into (2.15) we find

b2 =

(
8λQFT

π

)1/4

, (4.2)

which is real and positive. Having found b2 we can read of the free energy from
equation (2.19),

F2 = − 2π

3λQFT

(b2)2N2 = −4(2π)1/2

3λ
1/2
QFT

N2 . (4.3)

Note that the free energy increases with increasing λQFT. The Wilson loop VEV is
obtained from (2.22) by setting b = b2

log〈W 〉 = 2πb2 = 27/4π3/4λ
1/4
QFT . (4.4)

4.1.2 Supergravity

The supergravity solution for spherical D1-branes is most conveniently described
using the scalar field X as the radial variable. The full solution is then specified by

Y 2(X) =
(X + 1)(1−X)2

X
,

η(X) = ηIR +
5

2
log

1−X
2X

,

eA =

√
(1 +X)2 − Y 2

ge2η/5

√
X

Y
,

X ′ =− e2η/5g

√
X(−2 + 2X2 + Y 2)√

(1 +X)2 − Y 2
,

(4.5)

where the prime denotes a derivative with respect to the original radial coordinate
r and X ranges from 1/3 in the IR to 1 in the UV. To compute the holographic free
energy we evaluate the regularized supergravity action on the solution given above
and subtract the counterterms (3.23), (3.24), and (3.25). In addition, due to the
presence of the scalar Y we have to subtract the following infinite counterterm

Sct,inf = − 1

κ2
3

∫
d2x
√
h̃e−

2
5
η g

4
Y 2 . (4.6)
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Furthermore, there is a unique covariant finite counterterm that can be built out of
the boundary metric and scalar fields which reads

Sct,fin =
1

κ2
3

∫
d2x
√
h̃e−

2
5
η

(
cx
g
R̃ logX

)
. (4.7)

Evaluating the holographic ’t Hooft coupling (3.18) in the UV leads to the following
expression,

λhol =
1

27g8`8
sπ

3
e4ηIR/5 . (4.8)

Substituting this expression and subtracting all infinite and finite counterterms we
arrive at the following result for the holographic free energy

F hol = −2(2π)1/2N2

3λ
1/2
hol

(3− 4cx) . (4.9)

We do not have a rigorous argument to fix the coefficient cx of the finite counterterm
but we observe that if we set cx = 1/4 the holographic result in (4.9) agrees with
the field theory answer in (4.3) upon identifying λhol with λQFT. It will be most
interesting to fix cx by a first principle calculation. This can be presumably achieved
by ensuring that the holographic renormalization procedure we employ is compatible
with supersymmetry.

To compute the Wilson loop vacuum expectation value we start from the integral
(3.33). For p = 1 the on-shell probe string action becomes

Sstring =
1

`2
s

∫ 1

1/3

dX

X ′
eη(X)+A(X) =

eηIR/5

√
2g2`2

s

∫ 1

1/3

dX√
1−X2(1−X)

. (4.10)

This integral is divergent and we have to regularize it in the UV by introducing a
cutoff at X = 1− ε and subsequently subtracting the counterterm (3.34)

Sstring,ct =
eηIR/5

g2`2
s

1√
ε

+O(
√
ε) , (4.11)

in order to obtain the renormalized on-shell action. Using the relation (4.8) we find
the following holographic result for the Wilson loop expectation value

log〈W hol〉 = 27/4π3/4λ
1/4
hol . (4.12)

This precisely agrees with the QFT result in (4.4).
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4.1.3 A comment on the Yang-Mills action

We close this section with a comment. In [17] (see also [35] for extensions of this
analysis) it was shown that there is a Yang-Mills action for an N = (2, 2) vector
multiplet on S2 that is Q-exact and hence the partition function is independent of
the Yang-Mills coupling. In terms of the conventions used here, the N = (2, 2) vector
multiplet contains the gauge fields Aµ, the scalar fields φ0 and φ3, and the Dirac field
Ψ with the projections

Γ6789Ψ = Ψ , Γ4567Ψ = Ψ , (4.13)

which reduces Ψ to four independent real components. There is also one auxiliary
field K1. All other scalar and auxiliary fields are turned off. If we restrict to four
independent supersymmetry transformations where

Γ6789ε = ε , Γ4567ε = ε , (4.14)

and set ν1 = Γ89ε, the transformations on the fields in (2.2) reduce to

δε

(
F12 −

φ3

R

)
= −εΓ12 /DΨ

δε

(
K1 − φ0

R

)
= εΓ89 /DΨ

δεΨ =

(
F12 −

φ3

R

)
Γ12ε+

(
K1 − φ0

R

)
Γ89ε+DµφIΓ

µIε− i[φ0, φ3]Γ03ε

δεφI = εΓIΨ . (4.15)

It is then straightforward to show that the flat-space Yang-Mills Lagrangian is in-
variant under the transformations in (4.15) if F12 is replaced with F12 − φ3

R and K1

is replaced with K1− φ0

R . At the localization locus both terms are zero so the action
is also zero.

If we were to compare this Lagrangian to the one in (2.1) at d = 2 and with the
fields reduced as described above, then the Lagrangians differ by

− 1

2g2
YM

Tr

(
2

R
F12 φ3 −

1

R2
φ3φ3 −

3

R2
φ0φ0 −

2

R
K1φ0 −

1

R
ΨΛΨ

)
. (4.16)

One can show that (4.16) changes by a total derivative under the supersymmetry
transformations in (4.15). Hence, both actions preserve N = (2, 2) supersymmetry.
However, only the second action can be extended to 16 supersymmetries. The extra
term in (4.16) is not Q-exact so it will contribute a coupling dependent part to the
partition function.
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4.2 D2-branes

4.2.1 Field theory

The matrix model analysis in this case is more subtle and one has to be careful when
taking the different limits to obtain the kernel. If we set d = 3 + ε then we can
approximate G16(σ) for ε→ 0 as

G16(σ) =
2 ε2

ε2σ + σ3
+
πσ(coth(πσ) + πσcsch2(πσ))− 2

σ3
ε2 + O(ε3) . (4.17)

The first term in (4.17) comes from the n = 0 term in (2.5) while the second term
comes from all other values of n. We can also see from (2.6) that C1 ≈ 4π2ε in this
limit, which approaches zero because the super Yang-Mills action is Q-exact in three
dimensions. Aside from the first term, all other terms in (4.17) are nonsingular on
the real line and of order ε2 or higher. Hence they can be dropped in the saddle point
equation in (2.6). Therefore, in the large N limit the saddle point equation reduces
to the integral equation10

4π2ε

λQFT

σ = 2

∫ b

−b
− ρ(σ′)dσ′

σ − σ′
−
∫ b

−b

ρ(σ′)dσ′

σ − σ′ + iε
−
∫ b

−b

ρ(σ′)dσ′

σ − σ′ − iε
+ O(ε2) . (4.18)

Naively it looks like the right hand side of (4.18) is even in ε. However, because of
the poles at σ ± iε (4.18) reduces to

4π2ε

λQFT

σ = πi
(
ρ(σ + iε)− ρ(σ − iε)

)
+ O(ε2) = −2περ′(σ) + O(ε2) . (4.19)

Hence, to leading order in ε we have that ρ(σ) = π
λQFT

(b2 − σ2). The value of b is

fixed by setting
∫ b
−b ρ(σ)dσ = 1, which gives

b = b3 ≡
(

3λQFT

4π

)1/3

. (4.20)

The density ρ(σ) and value for b3 are precisely what one finds when analytically
continuing (2.14) and (2.15) to d = 3. We can then use (2.19) and (2.21) to find the
free energy and the expectation value of the BPS Wilson loop. For the free energy
we find

F3 = 0 , (4.21)

which is not surprising given the Q-exactness of the SYM action in three dimensions.
However, the Wilson loop is surprisingly nontrivial. Here we find that

〈W 〉 =
3

ξ3
(ξ cosh ξ − sinh ξ) , ξ = 61/3π2/3λ

1/3
QFT . (4.22)

10After a rescaling the integral equation in (4.18) has the same form as in [34] and we could
extract the the free energy by taking a limit of their results.
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To compare with supergravity we note that for for λQFT � 1 the logarithm of
the Wilson loop VEV is approximately

log〈W 〉 ≈ 61/3π2/3λ
1/3
QFT . (4.23)

We stress however that (4.22) is exact for any nonzero λQFT. If we expand (4.22) at
small λQFT we find that

〈W 〉 = 1 +
1

10
(6π2λQFT)2/3 + O(λ

4/3
QFT) , (4.24)

hence this result cannot be reproduced in perturbation theory. Strictly speaking, the
perturbative behavior is only found for λQFT < ε2 where the matrix model approaches
a Gaussian model. In this sense, d = 3 MSYM is strongly coupled for any nonzero
coupling.

One can also see that the behavior of the Wilson loop VEV is essentially an
infrared effect as the only relevant contribution to G16(σ) comes from the n = 0
term in the partition function (2.5). The numerator of this term is the Vandermonde
determinant while the denominator is the uncanceled contribution of the constant
spherical harmonics about the localization locus [29].

4.2.2 Supergravity

The supergravity solution for spherical D2-branes is given by the following system
of equations

Y 2 =
1−X

2X

(
(1−X)(1 + 2X) +

√
(1−X)(1 + 3X)

)
,

eη =eηIR

√
(1−X)

(
1 +X +

√
(1−X)(1 + 3X)

)
√

2X
,

eA =
e−η/4

g

√
X3

Y 2
−X ,

X ′ =− eη/4g

√
X(−2X + 2X2 + Y 2)√

X2 − Y 2
,

(4.25)

Like for D1-branes we use X as the radial variable which ranges from 2/3 in the IR
to 1 in the UV. In order to obtain the holographic free energy we proceed similarly
to the previous case and subtract the counterterms (3.23), (3.24), (3.25) and an
additional infinite counterterm

Sct,inf = − 1

κ2
4

∫
d3x
√
h̃ e−

1
2
η g

4
Y 2 , (4.26)
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in order to obtain a finite free energy. In this case we do not find any finite countert-
erms. Evaluating the regularized on-shell action we find that the holographic free
energy vanishes

F hol = 0 . (4.27)

This agrees with the supersymmetric localization result in (4.21).
In order to compute the holographic Wilson loop expectation value we have to

evaluate the following integral,

Sstring =
1

`2
s

∫ 1

2/3

dX

X ′
eη(X)+A(X) =

1

g2`2
s

∫ 1

2/3

dX
eη/2(X2 − Y 2)

Y (−2X + 2X2 + Y 2)
. (4.28)

Using (4.25) one can show that the integral reduces to

Sstring =
eηIR/2

g2`2
s

∫ 1−ε

2/3

dX
1√

(1−X)3(1 + 3X)
=

eηIR/2

g2`2
s

(
1√
ε
− 3

2

)
, (4.29)

where we have introduced a cutoff ε→ 0. To regulate the integral we need to subtract
the counterterm (3.34) given by

Sstring,ct =
eηIR/2

g2`2
s

(
1√
ε
− 1

2
+O(

√
ε)

)
. (4.30)

Note that this counterterm contains a crucial finite piece needed to match the local-
ization result. After substituting the explicit expression (3.18) for λhol,

λhol = − 1

6g6`6
sπ

2
e3ηIR/2 , (4.31)

we find the following holographic result for the Wilson loop vacuum expectation
value

log〈W hol〉 = −SRen.
string = 61/3π2/3λ

1/3
hol . (4.32)

This agrees with the field theory result (4.23).

4.3 D3-branes

The worldvolume theory on spherical D3-branes is simply the Euclidean N = 4 SYM
theory on S4. Since this is a conformal theory we can apply a conformal transfor-
mation to map S4 to R4 and then analytically continue to Lorentzian signature.
Supergravity dual of the theory is the the well-known AdS5×S5 background of type
IIB supergravity. Both the QFT and supergravity evaluations of the free energy
and Wilson loop vacuum expectation value are well-known results available in the
literature. Here we briefly summarize how they can be obtained from our general
formalism.
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Setting d = 4 in (2.15) we find the eigenvalue endpoint

b4 =

√
2λQFT

2π
, (4.33)

which is the expected result from the Wigner distribution. To determine the free
energy, we set d = 4 + ε and take the limit ε→ 0 since there is a singularity in (2.19)
at d = 4. We find

F4 = −2π2N2

λQFT ε

(
λQFT

2π2

)1+ε/2

+ O(ε) = −N
2

ε
− N2

2
log λQFT + O(ε) . (4.34)

The divergent piece proportional to ε−1 is an overall constant that can be removed,
leaving the well-known result for the Gaussian matrix model. The Wilson loop VEV
can be found by inserting b4 in (2.21)

log〈W 〉 =
√

2λQFT . (4.35)

The free energy and the Wilson line VEV for N = 4 can also be computed holo-
graphically using standard results in the literature. An efficient way to obtain the
end result on S4 is to take the m = 0 limit of the N = 2∗ calculations in [7] and
[9].11

4.4 D4-branes

4.4.1 QFT

Next we consider the case of spherical D4-branes which can be studied by setting
p = 4, or equivalently d = 5, in the various general expressions above. From (2.15)
with d = 5 we find that the eigenvalue endpoint is at

b5 =
λQFT

4π2
. (4.36)

The free energy computed from (2.19) is then given by

F5 = −λQFTN
2

12π
, (4.37)

which agrees with the results in [18, 19, 20].
To compute the VEV of the BPS Wilson loop we need to plug the expression for

b5 in (2.21) and take the large λ limit to find

log〈W 〉 =
λQFT

2π
. (4.38)

11Note that for p = 3 our convention for g2
YM as given in (3.13) differs by a factor 2 from the

convention used in [7, 9].
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4.4.2 Supergravity

The supergravity solution for spherical D4-branes is particularly simple as it is just a
dimensional reduction of the AdS7 × S4 solution of eleven-dimensional supergravity.
In this case the AdS7 space has an S5 × S1 boundary. The spherical D4-brane
solution is obtained by a reduction along S1 leading to the following expression in
our variables:

X =1 ,

Y =
1

2
e2ηIR−2η ,

(η′)2 =
g2

16
e−5η

(
e4η − e4ηIR

)
,

eA =2
eη/2

g

√
e4η−4ηIR − 1 .

(4.39)

Notice that it is convenient to use η as the radial variable which runs from ηIR in the
IR to infinity in the UV. To compute the holographic free energy we follow the, by
now familiar, procedure of evaluating the on-shell action and subtracting the infinite
counterterms (3.23), (3.24), (3.25). No other counterterms are required in order to
regularize the action. However, we do find a number of covariant counterterms which
give finite contribution to the on-shell action. These are given by12

Sct,fin =
1

κ2
6

∫
d5x
√
h̃e2η

(
c1

(
1

g
R̃Y 2 − 20gY 4

)
+ c2gY

6 +
c3

g
R̃Y 4 +

c4

g3
R̃2Y 2

)
.

(4.40)
Although these counterterms look innocuous in six-dimensional gauged supergravity,
from the perspective of the parent SO(5) gauged seven-dimensional supergravity, they
are not gauge invariant. This is because the scalar field Y arises as the component of
one of the SO(5) gauge fields, Aµ, along the S1 direction along which we reduce the
seven-dimensional theory [15]. Therefore the Y 2 term in six dimensions corresponds
to terms of the form AµAµ. After adding all these contributions and substituting
the ’t Hooft coupling

λhol =
2π

g2`2
s

e2ηIR , (4.41)

the renormalized holographic free energy reads

F hol = −λholN
2

96π
(10 + 80c1 + c2 + 20c3 + 400c4) . (4.42)

Similar to the discussion of the on-shell action for spherical D1-branes in Section 4.1
we do not know how to fix the coefficients c1,2,3,4 from a first principle calculation.

12Two more finite counterterms can be written as a product of quadratic curvature invariant
times Y 2, for an S5 boundary, these are related to the last term in (4.40).
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However, we note that a convenient choice, namely

c1 = c2 = c4 = 0 , c3 = − 1

10
, (4.43)

makes the holographic result agree with the QFT calculation (4.37). Gauge invari-
ance of the seven-dimensional supergravity theory would indicate that all four finite
counterterms should vanish, however in this case we reproduce the result of [19] and
do not find a match with the localization result. However, if we choose the coun-
terterm coefficients as in (4.43) we obtain an agreement with the supersymmetric
localization calculation at the expense of breaking the gauge invariance of the super-
gravity counterterms. This predicament is reminiscent of the results in [21] in the
context of holographic renormalization for AdS5 with an S3 × S1 boundary.

To evaluate the Wilson loop VEV we plug the solution (4.39) into the general
expression (3.33) using η as a radial variable. We are then left with the following
integral

Sstring =
1

`2
s

∫
dreη+A =

1

`2
s

∫
dη

η′
eη+A =

8

g2`2
s

∫ ∞
ηIR

dη e4η−2ηIR . (4.44)

Evaluating the UV regulated integral and subtracting the counterterm in (3.34)
results in

log〈W hol〉 =
λhol

2π
, (4.45)

which matches with the localization result in (4.38).

4.5 D5-branes

4.5.1 Field theory

We next discuss MSYM on S6 which was previously investigated in [36]. This case
is subtle because both (2.15) and (2.19) have an essential singularity at d = 6. To
deal with this we set d = 6− ε, after which we find

F6 = −32π4εN2

λb
e−8/3−γE

(
3λb
8π3ε

)2/ε

, (4.46)

where γE is the Euler-Mascheroni constant and λb is bare ’t Hooft coupling. Hence
the free energy is negative and infinite for any value of λb in the limit ε → 0+.
However, if we substitute d = 6 − ε directly into (2.6) it takes the form to leading
order in ε

C1

λb
Nσi =

(
6

ε
− 6γE + 4

)
Nσi − 3

∑
j 6=i

(σi − σj) log(σi − σj)2 . (4.47)
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The first term on the right hand side can be absorbed into the ’t Hooft coupling,
hence we define the renormalized coupling λQFT in terms of λb as

1

λQFT
=

1

λb
+ Cλ , (4.48)

where the constant Cλ is given by

Cλ = −
(

6

ε
− 6γE + 4

)
C−1

1 = − 3

8π3

(
1

ε
+

1

2
log (4π)− 1

2
γE −

1

3

)
(4.49)

Notice that since the r.h.s. of (4.47) contains ε−1 it is crucial to expand C1 up to
first order in ε to obtain Cλ to order O(ε0). Substituting λb in terms of λQFT into
(4.46) we find

F6 = −12πe−8/3−γEN2

(
1− ε

(
8π3

3λQFT
− 1

3
− 1

2
γE +

1

2
log (4π)

))2/ε

= −3N2 exp

(
− 16π3

3λQFT
− 2

)
. (4.50)

The −2 in the argument of the exponent could be removed by a different scheme
choice for Cλ.

A similar treatment can be applied to b6. Again using (4.48) for λQFT we find

b6 = 4
√
πe−4/3−γE/2

(
3λb
8π3ε

)1/ε

= 2 exp

(
− 8π3

3λQFT
− 1

)
. (4.51)

This leads to the following expectation value for the BPS Wilson loop

log〈W 〉 ≈ 4π exp

(
− 8π3

3λQFT
− 1

)
. (4.52)

The above results can also be directly obtained from the saddle-point equation (4.47)
which we consider in detail in Appendix C. While the prefactors of the exponentials
in (4.50) and (4.52) are scheme dependent since they can be changed by a shift of
the renormalized coupling λQFT, we can take the following combination of the free
energy and the Wilson-loop VEV,

F6

(log〈W 〉)2
= − 3N2

16π2
, (4.53)

which is scheme independent.
The form of (4.46) and (4.52) is also suggestive. We expect that the UV comple-

tion of 6D maximal super Yang-Mills is the (1,1) little string. If we now write the
free energy in terms of the little string tension T = 2π2

g2
YM

, we get

F6 ∼ N2 exp

(
−16π3

3

TR2

N

)
. (4.54)
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In the large R limit S6 approaches flat space and F6 falls off to zero, consistent
with the flat space free energy found in [25]. The correction away from flat space is
suggestive of a non-perturbative contribution coming from the string world-sheet. It
would be interesting to explore this further.

Note that (4.51) and the assumption that the eigenvalues are widely separated
imply that λQFT is small and negative. However, (2.8) and (2.9) show that near
d = 6 the crossover from the weak to the strong regime happens when |σij| ∼ ε1/2.
The approximation is then valid if b6 � ε1/2 which corresponds to λQFT � 4π3

3(− log ε)
.

Therefore, in the limit ε→ 0 the results in (4.46) and (4.52) can be trusted for any
positive ’t Hooft coupling.

4.5.2 Supergravity

As can already be seen from the localization computation, handling the divergences
in this case is subtle. It is clear that the scaling relation in (3.35) breaks down for
p = 5 and there are also special features of the supergravity solution which render the
evaluation of the probe string action difficult. Additionally, the dual frame formalism
of [23] is not adapted to the case of five-branes.

The supergravity solution for spherical D5-branes can be obtained from the fol-
lowing system of equations

X ′ =e−2η
√
Xg

2− 8X + 6X2 − 3Y 2

√
1− 6X + 9X2 − 9Y 2

,

(Y 2)′ =e−2ηY 2g
1− 16X + 15X2 − 9Y 2√
X(1− 6X + 9X2 − 9Y 2)

,

η′ =− 1

10
e−2ηg

√
1− 6X + 9X2 − 9Y 2

√
X

,

e2A =
e4ηX((1− 3X)2 − 9Y 2)

g2Y 2
.

(4.55)

We were not able to find an analytic solution to this system of equations. A numerical
solution that interpolates between the IR at (X, Y 2) = (4/3, 16/9) and the UV at
(X, Y 2) = (1, 0) is plotted in Figure 5. In order to extract holographic observables
we must find asymptotic expansions for the supergravity fields. Unfortunately the
BPS equations do not admit a simple UV expansion. Expressing Y 2 as a function of
X the asymptotic series is simultaneously an expansion in (X − 1) and e−1/(X−1) of
the general form

Y 2 = P0(X) + e−1/(X−1)P1(X) + e−2/(X−1)P2(X) +O(e−3/(X−1)) . (4.56)

where Pi denotes a power series (possibly with negative powers) in (X−1). The first
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Figure 5: The supergravity solution for the scalar fields Y and η using X as the
radial coordinate.

two terms P0 and P1 can be resummed to yield

Y 2 =−
5X − 6X2 +

√
X(4− 3X)

6

+ Ce−
1+
√
X(4−3X)

X−1
2X + 3X2 + 3X

√
X(4− 3X)√

X(4− 3X)
+O(e−2/(X−1)) ,

(4.57)

where C is a constant that must be carefully chosen so that the UV expansion
matches onto the IR. Note that the first line in the above expansion is in fact an
exact solution of the BPS equations, However, this solution does not reach the IR
since one encounters a singularity at X = 4/3. The corresponding UV expansion for
η takes the form

η =ηUV +
1

20

(
2 + 2

√
X(4− 3X)

X − 1
+ log

2−X +
√
X(4− 3X)

4X

)

− 6Ce−2/(X−1)

5(X − 1)2
+O

(
e−2/(X−1)

X − 1

)
.

(4.58)

In the IR we find an asymptotic series which follows the numerical solution to a
very good approximation for a large part of the domain but deviates from the ac-
tual solution in the UV. This implies that the IR expansion will not be useful for
extracting the holographic observables from the background. Instead we will employ
the numerical solution. As we will explain, the linear behaviour of the “dilaton” η in
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the UV will prevent us from performing a complete holographic renormalization as
we did in the previous examples.

First let us evalute the expression (3.18) for p = 5 to determine the relation of
the supergravity parameters to the field theory data. Surprisingly we find that λhol

does not depend on ηIR at all. In fact we find

λhol = lim
X→1

8π3Y 2

X((1− 3X)2 − 9Y 2)
= lim

ε→0

(
8π3ε

3
+O(ε2)

)
= 0 , (4.59)

where we use X = 1 + ε and ε → 0+ in the UV. Since this vanishes in the strict
ε→ 0 limit we do not have a good definition of λhol for D5-branes. We will therefore
proceed with the computation of holographic observables and extract the λhol by
relating the localization and supergravity result for one of the observables, say the
Wilson loop VEV. The relation can then be used to compare the supergravity result
for the free energy with (4.50).

Let us therefore evaluate the Wilson loop VEV for spherical D5-branes. In order
to do so we can again use X as a radial variable and evaluate the on-shell probe
string action. Inserting the expressions (4.55) in the on-shell probe string action, we
are left with the following integral

Sstring =
1

`2
s

∫
dreη+A =

1

`2
s

∫
dX

X ′
e5η

Y

(1− 3X)2 − 9Y 2

2− 8X + 6X2 − 3Y 2
. (4.60)

Notice that the integrand depends exponentially on the dilaton η, in the UV this
diverges as 5η = 1/ε+O(log ε). This implies that the integrand diverges in the UV
with a combination of polynomial and exponential powers in the cutoff 1/ε

Lstring =
1

g2`2
s

[
e1/ε
√

3
(

1
ε
− 1 +O(ε)

)
+O(e−1/ε)

]
(4.61)

where, as before, X = 1 + ε. Remarkably, the standard worldsheet counterterm,
discussed around Eq. (3.34) cancels the entire exponential divergence and leaves a
finite on-shell action. Explicitly this counterterm has the form

Sstring,ct = e5η

√
X
√

(1− 3X)2 − 9Y 2

g2`2
sY

∣∣∣∣
X=1+ε

. (4.62)

Once the action has been made finite in the UV we can evaluate it numerically us-
ing the numerical solution to the BPS equations. The accuracy of the numerical
procedure is limited due to the fact that in the implementation of holographic renor-
malization we have to subtract large numbers. Nevertheless, we were able to show
that with 1% accuracy the following result holds

log〈W hol〉 = −SRen.
string ≈

1

g2`2
s

e5ηIR . (4.63)
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Comparing this expression with (4.52) suggests the relation

ηIR =
1

5
log(4πg2`2

s)−
8π3

15λQFT
− 1

5
. (4.64)

Let us now return to the supergravity action with the aim to extract the holo-
graphic free energy. The UV analysis of the bulk supergravity action integrand has
the following structure

Son-shell =
π3

5g5κ2
7

[
e2/ε
(576

ε5
+

1248

ε4
+O(ε−3)

)
+O(e1/ε)

]
. (4.65)

The polynomial divergence multiplying e2/ε can be cancelled by the standard covari-
ant counterterms. However this still leaves seemingly infinitely many finite terms
multiplying an exponential divergence. In the case of five-branes, infinitely many
counterterms are available due to the linear dilaton in the UV. It therefore seems
that it is required to use infinitely many counterterms to eliminate the exponential
divergence in (4.65). Indeed, we have not been able to find a finite set of coun-
terterms that renders the action finite.13 If we nevertheless assume that (finitely or
inifinitely many) counterterms can be found that render the action finite, the form
of the resulting expression can be deduced on general grounds. Since the bulk action
is proportional to e10η we expect

SRen.
on-shell = −6π3 I

g5κ2
7

e10ηIR , (4.66)

where I is an undetermined constant that we are not able to evaluate without a full
knowledge of the counterterms. Using (4.64) we find

F hol = SRen.
on-shell = −3 IN2 exp

[
− 16π3

3λQFT
− 2

]
, (4.67)

in a nice agreement with the field theory result (4.50). As we argued above, the coef-
ficients of the exponentials in (4.50) and (4.52) are dependent on the renormalization
scheme but a scheme independent quantity can be found by combining the two as
in (4.53). We observe that the same combination in holography does not rely on the
map (4.64) and we find

SRen.
on-shell

(SRen.
string)

2
= −3N2I

16π2
, (4.68)

which matches (4.53) if the constant I equals one.
13Such a finite set of counterterms was shown to exist in a recent study of five-branes on some

curved manifolds [27].
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4.6 D6-branes

4.6.1 Field theory

We now turn to d = 7 and start by rewriting the one-loop determinant in (2.5) as

Z1−loop(σ) = exp

(∑
i<j

∞∑
n=1

2(n2 + 1) log

(
1 +

σ2
ij

n2

))
. (4.69)

To test the divergence we expand the log at large n, showing that the log of the
determinant behaves as

logZ1−loop(σ) ∼ 1

2

∑
i,j

∑
n

2σ2
ij

(
1 + n−2

)
− σ4

ij

(
n−2 + n−4

)
+ . . . . (4.70)

The sum over n leads to a linear divergence for the σ2
ij term while the higher terms

are finite. The divergent piece can be rewritten as

2n0N
∑
i

σ2
i , (4.71)

where n0 is a UV cutoff in n. This divergence has the form of the action in (2.4) and
can be absorbed by shifting the coupling. As for the D5-brane case, we can define a
bare and a renormalized ’t Hooft coupling through the relation

1

λQFT
=

1

λb
− n0

2π4
. (4.72)

The finite remainder from Z1−loop(σ) is what contributes to the analytic continu-
ation of (2.7) around the singularity at d = 7. If we assume large separation between
the eigenvalues then we can use (2.11) if we replace λ with λQFT in the lefthand
side of the equation. However, C2 in (2.10) is negative at d = 7. This is evident in
Figure 6 which shows G16(σ) for d = 7. At short distance the kernel is repulsive,
but becomes attractive for |σ| > 1. Because of this negative sign, if we analytically
continue (2.15) to d = 7 we find that the eigenvalue endpoint is at

b7 = − 2π3

λQFT
. (4.73)

The negative value for (4.73) indicates that strictly speaking this is not a solution
to (2.13) assuming the eigenvalue distribution has the form in (2.12). This is ob-
vious since (2.13) corresponds to an attractive central potential and an everywhere
attractive potential between the eigenvalues. In this case the only solution has all
eigenvalues at zero.
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Figure 6: The kernel G16(σ) for d = 7. At |σ| = 1 the kernel crosses over from
repulsive to attractive behavior.

To sort this out let us consider the full d = 7 kernel shown in Figure 6,

G
(7)
16 (σ−σ′) = 2π(1− (σ−σ′)2) cothπ(σ−σ′) , (4.74)

and take the strong coupling limit so that the inverse renormalized coupling ap-
proaches λ−1

QFT → 0+. While we cannot solve (2.6) analytically in this limit, we can
determine the eigenvalue distribution numerically. This is shown in Figure 7 where
we see that the short distance repulsion stabilizes the eigenvalues into a bounded
two hump distribution. Hence the free energy approaches a constant multiplied by
N2 in the strong coupling limit.

Now suppose we continue λ−1
QFT through zero, such that λQFT < 0. The central

potential is now repulsive and the eigenvalues are pushed farther away from the
center, but are still stabilized by the attractive long-range force. As we let λ−1

QFT
become more and more negative the two humps in Figure 7 get pushed farther apart
and we can then use the large separation approximation in (2.9). In fact, in this
approximation the eigenvalue density becomes two delta functions, as is shown in
appendix D.1. In appendix D.2 we numerically show that the short range repulsion
between the eigenvalues widens the delta functions to a width of order 1.

Since λQFT < 0, b7 in (4.73) is positive. In order for the large separation as-
sumption to be valid we require b7 � 1, which happens when λ−1

QFT � −1. Hence
we are in a negative weak regime for the renormalized coupling, which is distinctly
different from the usual positive weak coupling regime. Note that while λ−1

QFT � −1,
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λb which appears in the original Lagrangian satisfies λ−1
b � 1. If we now carry out

the analytic continuation of (2.19) we find

F7 =
4π4N2

3λQFT

(
− λr

2π3

)−2

=
16π10N2

3λ3
QFT

, (4.75)

which diverges toward negative infinity as λ−1
QFT → −∞. Likewise, for the Wilson

loop using (2.21) we find that

log〈W 〉 = log cosh(2πb7) ≈ − 4π4

λQFT
, (4.76)

which increases as λ−1
QFT → −∞. Note that the cosh function is consistent with the

delta function support at d = 7.
Since the central potential is unbounded from below, the position of the eigenvalue

center of mass is unstable. However, if the gauge group is SU(N) and not U(N) then
the eigenvalues satisfy the trace constraint

∑
i σi = 0, which keeps the center of

mass of the eigenvalues at the origin. This suggests that the U(N) theory cannot be
continued to negative λQFT.

Note further that the saddle point analysis is robust if λQFT is small and negative,
even when N is finite. As an example, consider an SU(2) gauge group. This has two
eigenvalues σ1 = −σ2, and following the analysis in appendix D.3 the saddle point
gives the same free energy as (4.75) with N = 2. From D.3 we also see that the
fluctuations to the free energy about the saddle point are

δF = − 4π4

λQFT
(δσ1)2 , (4.77)

hence the fluctuations are sharply suppressed and can be ignored if −λQFT � 1.

-1.0 -0.5 0.5 1.0
σ

0.1

0.2

0.3

0.4

0.5

ρ(σ)

Figure 7: Distribution of eigenvalues obtained from (2.6) numerically for d = 7,
λ−1
QFT = 0 and N = 501. The eigenvalues are clearly bounded within a finite region.
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4.6.2 Supergravity

Spherical D6-branes do not fit in the general framework described in Section 3. In
this case the SO(6−p) symmetry is trivial, hence the internal space is given simply by
the two-dimensional de Sitter factor. Furthermore the eight-dimensional supergravity
featured in the construction is particularly simple and contains only two scalar fields
instead of the familiar three. For this reason we will analyze spherical D6-branes in
several different ways in supergravity.

The spherical D6-brane solution is given by the following type IIA supergravity
background, where we keep the radius R of the sphere arbitrary [15],

ds2
10 =
R2e2Φ/3

g
2/3
s

(
1

4
dρ2 + dΩ2

7 +
1

16
sinh2 ρ dΩ̃2

2

)
,

H3 =
3

g2g2
s

e2Φdρ ∧ vol2 ,

F2 =
i

gsg
vol2 ,

e2Φ =g2
s

(
gR
4

sinh ρ

)3

.

(4.78)

The radial coordinate ρ takes values from 0 to ∞. It is convenient at this point to
define the new coordinate

U ≡ 2π4R2 sinh2 ρ

g2
YMN

. (4.79)

The equations in (4.78) then reduce to

ds2
10 =`2

s

((
g2

YMN

2(2π)4U

)1/2
dU2

1 +
g2
YMNU

2π4R2

+

(
2(2π)4U

g2
YMN

)1/2

R2dΩ2
7 +

(
g2

YMNU
3

2(2π)4

)1/2

dΩ̃2
2

)
,

H3 =
3`2
sg

2
YMNU

(2π)4R
dU ∧ vol2√
1 +

g2
YMNU

2π4R2

,

F2 =
iN`s

2
vol2 ,

e2Φ =

(
g2
YMU

3

2π4N3

)1/2

.

(4.80)

These equations reduce to the flat space supergravity solutions in [14] when taking
R → ∞ while keeping U and g2

YMN fixed. The parameter U can be thought of as
the energy of a string stretched between a probe D6-brane and the N D6-branes. For
small U this is directly probing the weakly coupled 7D MSYM which has an effective
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coupling g2
eff = g2

YMU
3. However, in string units one sees that the curvature on the

dS2 is large for small U so supergravity can not be trusted in this regime.
Following work of Susskind and Witten [37], Peet and Polchinski observed that

U is not actually the energy scale for a probe in supergravity [22]. Instead, this is
determined by the wave equation for a field in the bulk, say a scalar ψ, which is given
by (

− ∂2

∂U2
+
k2g2

YMN

2(2π)4U

)
Uψ = 0 , (4.81)

where we have ignored the modes on dS2. From this we see that the energy scale for
supergravity is

E =

(
2(2π)4

g2
YMNU

)1/2

. (4.82)

In terms of this energy we have that effective coupling is

g2
eff = g2

YM

(
2(2π)4

g2
YMNU

)3/2

, (4.83)

which decreases with increasing U . At the same time, the curvature on dS2 is small
if U3 � 2(2π)4

g2
YMN

, which corresponds to g2
effN � 2(2π)4. Hence it seems that the

supergravity is dual to a weakly coupled gauge theory, but not the standard weakly
coupled gauge theory since that is found at small U where we cannot trust the
supergravity.

Now let’s assume that R is large but finite. We then see from (4.80) that we are
in the flat brane regime when E as defined in (4.82) satisfies E � R−1. This shows
that an observer starts seeing the curvature of the branes when the energy scale is
on the order of the inverse radius. Furthermore, the radius of the S7 should be small
in string units, which requires that E � 2(2π)4R3

g2
YMN

R−1, hence we need weak coupling
in order to trust the supergravity for distances significantly below the size of the
sphere. As E approaches the sphere scale its dependence on U starts to change, such
that when U � 2π4R2

g2
YMN

, E scales as (logU)−1 ∼ ρ−1.
As we keep increasing U the string coupling eventually becomes large and we

should uplift the solution to eleven-dimensional supergravity. The uplifted metric
and fields were given in [15], where the solution takes the form of H2,2/ZN × S7.
Explicitly, the eleven-dimensional metric is given by

ds2
11 =

L2

4

(
ds2

4 + 4dΩ2
7

)
, L = R/g1/3

s

ds2
4 = dρ2 − sinh2 ρ

4

(
dt2 − cosh2 t dψ2 + (N−1dω − sinh t dψ)2

)
. (4.84)

This metric has two time directions, t and ω, which is to be expected since it describes
the M-theory lift of a Euclidean brane. We refer to [15] for more details. The eleven-
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dimensional 4-form is given by

G4 =
6 i

L
volH2,2 , (4.85)

where volH2,2 is the volume form for the H2,2/ZN metric. The energy scale on the
sphere maintains the ρ−1 fall off so that for large ρ the only mode accessed is the
constant one. Note that there is also a conical singularity at ρ = 0 if N > 1. This
singularity is what is left of the highly curved IIA theory at small U .

Let’s now use the results from the previous section to propose a dual theory to the
supergravity. We saw using localization that there was a smooth transition between
positive and negative λr. We also saw that the “strong coupling" behavior, that
is having widely separated eigenvalues, occurs when −λr � 1. If we assume that
g2
YM < 0 in the supergravity, then (3.2) and (3.13) imply that the metric and e2Φ in
(4.78) have a negative sign. To compensate for this we can send ρ→ −ρ in which case
we go back to the original signs for the metric and string coupling, while the H3 field
changes sign. The eleven-dimensional supergravity metric in (4.84) is unchanged but
the four-form field in (4.85) changes by a sign under these transformations. Hence,
now everything looks almost the same as before, except any dictionaries we have
between the supergravity and the gauge theory should have g2

YM replaced with −g2
YM.

For example, the condition for small curvature on the dS2 is now U3 � −2(2π)4

g2
YMN

, which
translates to the relation −g2

effN � 2(2π)4 for the effective coupling .
We are now ready to compute the free energy and Wilson loop VEV using su-

pergravity. One way to evaluate the free-energy of the spherical D6-brane is to use
the eight-dimensional gauged supergravity originally used in [15] to construct the
background. The eight-dimensional action is

S =
1

2κ2
8

∫
?8

{
R− 1

2
(|dβ|2 + e2β|dχ|2 − 3g2

2
eβ
}
, (4.86)

where κ2
8 is given by (3.20). The eight-dimensional BPS equations are written in

terms of the metric
ds2

8 = dr2 +R2e2AdΩ2
7 , (4.87)

where the metric function A is only a function of the radial variable r. The BPS
equations read

β = − 6A ,

χ′ = 6iR−1e−7A−2β ,

(A′)2 =R−2e−2A +
g2eβ

16
.

(4.88)

These equations can be easily solved by using the function A as the radial variable.
It can then be related to the coordinate ρ appearing in (4.78) by the transformation

e2A =
gR
4

sinh ρ . (4.89)
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Evaluating the action on-shell using the above expression for the eight-dimensional
fields results in

S =
gR9

211g2
s`

8
sπ

2

∫ ∞
0

(1 + 7 cosh 2ρ) sinh ρ dρ , (4.90)

where we have included the Gibbons-Hawking term and performed the integral over
the 7-sphere. This integral diverges as ρ → ∞ which as we argued before is the IR
of the geometry. The eight-dimensional metric is in fact completely regular there
whereas the scalar β diverges. This statement is of course dependent on the frame
we use in supergravity. It is a lucky coincidence here that the Einstein frame metric
is regular wheras the string frame or any other frame which is related to the metric
above via a power of the scalar field eβ is singular. Subtracting divergences at ρ→∞
can therefore be done as before, by changing frame and introduce curvature coun-
terterms such that the divergences cancel. We can also perform minimal subtraction;
expand out the divergent terms and remove them by hand. In both cases the result
is the same, the contribution of the IR is eliminated completely. The on-shell action
is completely dominated by its contribution in the UV. Using the relations in (3.2)
and (3.13) with g2

YM replaced with −g2
YM we find

F hol =
16π10N2

3λ3
hol

, (4.91)

where
λhol ≡ Ng2

YMR−3 = −25π4`2
s

gR3
, (4.92)

is defined as before but since there is no η-scalar in this case the equation (3.18) is not
directly applicable. The extra minus sign is to account for the negative Yang-Mills
coupling. This result is in complete agreement with the localization result in (4.75).

We can also obtain the result in (4.91) from the eleven-dimensional supergravity.
Before any Wick rotation the eleven-dimensional action is given by [38]

S =
1

16πG11

∫
d11x

√
g(11)

(
R(11) − 1

2
|G4|2

)
, (4.93)

where
|G4|2 ≡

1

4!
(G4)µ1...µ4(G4)µ1...µ4 . (4.94)

Substituting the solution (4.84)-(4.85) into (4.93) results in

S =
1

16πG11

∫
d11x

√
g(11)

12

L2
. (4.95)

In order to evaluate this on-shell action we need to Wick rotate one of the time
directions as t→ −iτ in (4.84). This changes the metric ds2

4 to

ds2
4 → dρ2 +

sinh2 ρ

4

(
dτ 2 + cos2 τ dψ2 − (N−1dω + i sin τ dψ)2

)
, (4.96)
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Note that the M-theory circle parametrized by ω remains time-like. Even though
the metric is now complex, its determinant remains real. The on-shell action then
becomes14

Son−shell = − 1

16πG11

∫
d11x

√
−g(11)

12

L2
= − 1

16πG11

π6L9

2N

∫ ρ0

0

dρ sinh3 ρ , (4.97)

where we have introduced a UV cutoff ρ0 to regulate the volume of H3,1 in (4.96).
As we take ρ� 1 the on-shell action behaves as

Son−shell = − 1

16πG11

π6L9

2N

(
1

24
e3ρ0 − 3

8
eρ0 +

2

3
+O(e−ρ0)

)
. (4.98)

The divergent contributions in this expression should then be removed to obtain a
finite action. Using G11 = 16π7`9

s and the modified AdS/CFT dictionary to account
for the negative coupling, (2π`s)

3gs = −g2
YM

2π
, we find15

SRen.
on−shell =

16π10

3λ3
hol

N2 . (4.99)

This again agrees nicely with the free energy in (4.75).
The BPS Wilson loop can be computed using the IIA solution in (4.78). The

on-shell string action in this case is given in terms of the eight-dimensional metric
function

S =
1

`2
s

∫
ReA dr . (4.100)

Changing coordinates to the radial coordinate ρ as above we find

Sstring =
gR3

8`2
s

∫ ∞
0

dρ sinh ρ , (4.101)

Just like the on-shell action, this integral diverges in the IR and can be regularized by
adding a simple counterterm analogous to (3.34). This counterterm implements min-
imal subtraction resulting in the following expression for the Wilson line expectation
value

log〈W hol〉 = −4π4

λhol

, (4.102)

14The contribution to the integral over ρ in (4.97) might not be trustable for ρ . |λQFT|1/3.
However, if |λQFT| � 1, then this will lead to corrections of order |λQFT|2/3 and the results in
(4.99) are trustable to leading order.

15Note that in [15] the regularized on-shell action was computed using a four-dimensional ef-
fective supergravity approach leading to a result which differs by a factor of 2 from (4.99). The
eight-dimensional and eleven-dimensional approaches we use here is better justified and should be
employed instead.
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where we have again flipped the sign of g2
YM in the dictionary. This precisely agrees

with the localization result in (4.76).
An alternative way to compute the Wilson loop VEV is to evaluate the on-shell

action of an appropriately embedded M2-brane in the eleven-dimensional solution
(4.84). The M2-brane wraps the equator of S7 and extends along ρ and the M-
theory circle ω. In particular the brane is fixed along t and ψ since it should be
constant along the field theory scalar φ0. The holographic dual to the Wilson loop
VEV is then given by

log〈W hol〉 = −SRen.
M2 , (4.103)

where the probe M2-brane on-shell action is given by

SM2 = µ2

∫
d3σ
√

detP [GMN ] . (4.104)

P [GMN ] denotes the pullback of the determinant of the eleven-dimensional metric to
the M2-brane worldvolume and the brane tension is given by µ2 = 2π

(2π`s)2 . Evaluating
this action on our solution gives the following diverging result

SM2 = µ2
L3

4

2π

N
(2π)

∫ ∞
0

dρ sinh ρ =
gL3

8`2
s

(cosh ρ0 − 1) . (4.105)

where in the second step a cut-off ρ0 was introduced to regulate the divergence. By
adding a simple counterterm

SW,ct = −gL
3

8`2
s

sinh ρ0 , (4.106)

very similar in spirit to the counterterm (3.34), we obtain the following renormalized
on-shell action

SRen.
M2 = −gL

3

8`2
s

. (4.107)

Inserting the expression for λhol in this equation with a sign change in the dictionary
results in the following expression for the holographic Wilson loop VEV

log〈W hol〉 = −4π4

λhol

. (4.108)

This agrees nicely with the type IIA calculation in (4.102) and the localization result
in (4.76).

In [14] it was noted that the supergravity solution for D6-branes could be trusted
even for small N . This is consistent with our results here. As we showed in the last
section, the form of the free energy holds for small N , at least if N is even. In the
classical supergravity we find the same free energy as a function of N so this appears
to align well with the claim in [14]. There is a subtlety however for odd N . As follows
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from (D.18), the localization result for the free energy comes with an extra factor
of N(N−1)

(N−1/2)2 . This arises because one eigenvalue has to be placed at the origin in the
solution to the saddle point equation. Hence, it is essentially a quantization condition
that the supergravity does not directly see. In the N = 1 case the free energy is zero
for the gauge theory, not surprisingly since the gauge group is SU(1) which is trivial.
The supergravity does not look trivial although the eleven-dimensional uplift is now
smooth at the origin. It would be interesting to understand this point better.

5 Discussion

In this work we showed how to compute the partition function and the expectation
value of a BPS Wilson loop for SU(N) maximal SYM on Sd in the limit of large
N and large ’t Hooft coupling for 2 ≤ d ≤ 7. We approached this problem using
supersymmetric localization in the QFT as well holography using the spherical brane
supergravity solutions of [15]. Both calculations involve non-trivial elements due to
the peculiarities of the localization matrix model for certain values of d and the fact
that the supergravity solutions are not asymptotically AdS. It will thus be interesting
to extend and generalize our work in several directions which we discuss below.

Studying the generalization of our construction for SYM theories with less super-
symmetry is of clear interest. Both pure and matter coupled SYM theories on Sd

with 8 supercharges exist in 2 ≤ d ≤ 6 and it is possible to study them in the large N
limit using supersymmetric localization. Constructing the corresponding supergrav-
ity solutions is not straightforward since it is not clear which classes of such SYM
theories have weakly coupled supergravity dual. The analogous question for SYM
with 4 supercharges on Sd with d ≤ 4 is also interesting but is perhaps even harder
to analyze, both in quantum field theory and in supergravity. We do not know how
to extend our construction to d > 7 but it will certainly be interesting to study this.
See [39] for some recent work on curved D7-branes and [40] for a QFT analysis that
may be relevant to this question. We have focused on MSYM theories on the round
sphere in this paper. It is possible to place supersymmetric gauge theories on other
curved manifolds, for example on squashed spheres, at the price of breaking part of
the supersymmetry. The generalization of our analysis to these more general setups
will be interesting to pursue.

In the analysis of the matrix model results we have focused on planar MSYM
in the limit of large ’t Hooft coupling λ. It will be very interesting to extend this
analysis to finite values of λ while remaining in the large N limit. This will allow us
to understand whether there are any interesting phase transitions as a function of λ
akin to the ones observed for N = 2∗ in [4, 41]. For MSYM on S3 our results appear
to be exact in λ. While the free energy of this theory vanishes the Wilson loop VEV
is non-trivial and does not have a form suggesting a non-trivial phase transition.
It will be desirable to understand this result from a a perturbative analysis in the
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weakly coupled planar MSYM theory. Alternatively one could attempt to study 1/λ
corrections to the on-shell action of the probe-string in the supergravity solution.

In the holographic analysis of the spherical brane solutions we successfully em-
ployed the holographic renormalization procedure in the context of asymptotically
non-AdS space-times. It is desirable to put this procedure on a more solid footing and
to address the subtle question on how to fix the coefficients of the finite counterterms
in the on-shell actions we have encountered for D2- and D4-branes.

Finally, we would like to stress that for D5/NS5-branes, both in the matrix model
and the supergravity solution, we have encountered some intriguing UV divergences
which we managed to regularize in a seemingly consistent way. It will be very
interesting to understand whether these calculations can teach us something about
the structure of the (1, 1) little string theory.
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A Useful integrals

The following integrals are useful for the calculations in Section 2∫ b

−b
− dσ′|σ − σ′|αsign(σ − σ′)

(b2 − σ′2)α/2
= πασ csc

(
πα
2

)
, (A.1)

and ∫ b

−b

dσ′

(b2 − σ′2)α/2
=
b1−απ1/2Γ(2−α

2
)

Γ(3−α
2

)
, (A.2)

where we have defined α ≡ d− 5. Note that the result in (A.1) is independent of b.
The result in (A.1) can be understood by splitting the integral into two parts,∫ σ

−b

dσ′(σ − σ′)α

(b2 − σ′2)α/2
−
∫ b

σ

dσ′(σ′ − σ)α

(b2 − σ′2)α/2
. (A.3)
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Both integrals in (A.3) are discontinuous as σ crosses the branch cuts between −∞ <
σ < −b or b < σ <∞. However, it is straightforward to show that the discontinuities
cancel between the two integrals and so the sum must be a holomorphic function of
σ in the complex plane. By taking σ to a large imaginary value in (A.3) one can see
that the combined integrals have a leading linear behavior in σ with the coefficient
in (A.1), while the constant piece is zero because the integral in (A.1) is clearly an
odd function of σ.

It proves useful to define the following function

f(σ) ≡
Γ(3−α

2
)

π1/2Γ(2−α
2

)

σ

b
2F1

(
1

2
,
α

2
;
3

2
;
σ2

b2

)
. (A.4)

One can show that f ′(σ) = ρ(σ) where ρ(σ) is defined in (2.14), and that f(b) = 1/2.
Note that since ρ(σ) is an even function of σ, f(σ) is an odd function.

Finally, we present two integrals which are useful for the calculation of the free
energy

I1 ≡
∫ b

−b
dσρ(σ)σ2 =

b2

8− d
, (A.5)

and

I2 ≡
∫ b

−b
dσρ(σ)(b− σ)d−4 = 2bd−4π−1/2Γ(d−1

2
)Γ(8−d

2
) . (A.6)

B Gauged supergravity construction

Here we summarize the results in [15] on how to obtain the spherical brane solutions
of interest from maximal gauged supergravity in p + 2 dimensions. The Lorentzian
supergravity theory is constructed by a reduction of type II supergravity on S8−p.
This theory has to then be analytically continued to Euclidean signature and further
truncated to its SU(1, 1) × SO(6 − p) invariant sector in order to capture the R-
symmetry of the dual maximal SYM theory on Sp+1. The spherical brane solutions
preserve the SO(p+ 2) isometry of the sphere which the branes are wrapping. This
implies that the solutions can be constructed by restricting only to the metric, one
real scalar fields η, and one complex scalar field τ parametrizing an SL(2)/SO(2)
coset.16 The bosonic action for the truncated Lorentzian gauged supergravity theories
for 0 < p < 6 are

S =
1

2κ2
p+2

∫
?p+2

{
R +

3p

2(p− 6)
|dη|2 − 2Kτ τ̄ |dτ |2 − V

}
, (B.1)

where V is the scalar potential and Kτ τ̄ the Kähler metric obtained from the Kähler
potential

K = − log

(
τ − τ̄

2

)
, (B.2)

16The cases p = 3 and p = 6 have to be discussed separately.
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The scalar potential can be written in terms of the superpotential

W =

 −g e
1
2
η
(

3τ + (6− p)ie−
p

6−pη
)

for p < 3 ,

−g e
3(2−p)
2(6−p)η

(
3ie

p
6−pη + (6− p)τ

)
for p > 3 ,

(B.3)

where g is the gauge coupling constant of the supergravity theory. The scalar poten-
tial then reads

V =
1

2
eK
(

6− p
3p
|∂ηW|2 +

1

4
Kτ τ̄DτWDτ̄W −

p+ 1

2p
|W|2

)
, (B.4)

where Dτ = ∂τ + ∂τK is the Kähler covariant derivative.
For p = 6 the scalar η is not present and the action takes the form

S =
1

2κ2
8

∫
?8

{
R− 2Kτ τ̄ |dτ |2 − V

}
, (B.5)

where
V =

1

2
eK
(

1

4
Kτ τ̄DτWDτ̄W −

7

12
|W|2

)
, (B.6)

and
W = −3ig . (B.7)

The actions discussed above are in Lorentzian supergravities and have to be
analytically continued. This amounts to taking τ and its complex conjugate τ̃ as two
independent scalar fields. We should work with two superpotentials, W as defined
in (B.3) and W̃ given by

W̃ =

 −g e
1
2
η
(

3τ̃ − (6− p)ie−
p

6−pη
)

for p < 3 ,

g e
3(2−p)
2(6−p)η

(
3ie

p
6−pη − (6− p)τ̃

)
for p > 3 .

(B.8)

The scalar potential of the Euclidean theory is obtained by replacing W by W̃ in
(B.4).

The spherical brane solutions are domain wall backgrounds of the Euclidean su-
pergravity with the following metric

ds2
p+2 = dr2 +R2e2AdΩ2

p+1 . (B.9)

The scalar fields and the warp factor A only depend on the radial variable r. The
constant R is the radius of Sp+1 and is auxiliary since it can be absorbed into a
redefinition of the metric function A.
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We can now use this Ansatz in the supersymmetry variations of the (p + 2)-
dimensional gauged supergravity theory and look for solutions which preserve 16
supercharges. We find the following system of BPS equations:

(η′)2 = eK
(

6− p
3p

)2

(∂ηW)(∂ηW̃) , (B.10)

(η′)(τ ′) = eK
(

6− p
12p

)
(∂ηW)Kτ τ̃Dτ̃W̃ , (B.11)

(η′)(τ̃ ′) = eK
(

6− p
12p

)
(∂ηW̃)Kτ̃ τDτW , (B.12)

(η′)(A′ −R−1e−A) = −eK
(

6− p
6p2

)
(∂ηW)W̃ , (B.13)

(η′)(A′ +R−1e−A) = −eK
(

6− p
6p2

)
(∂ηW̃)W , (B.14)

where Kτ̃ τ is the inverse of the Kähler metric. Equations (B.10), (B.11), and (B.12)
arise from the spin-1

2
supersymmetry variations, while (B.13) and (B.14) arise from

the spin-3
2
variations.

Equations (B.13) and (B.14) lead to a first order differential equation and an
algebraic relation for the metric function A(r)

eA =
1

Rg2

2p

6− p
τ̃ − τ
τ̃ + τ

e
2(p−3)

6−p η(η′) . (B.15)

The BPS equations in (B.10)-(B.14) are compatible with the second order equations
of motion after the analytic continuation.

It is convenient to introduce a new parametrization of the scalar fields as

τ = ie−
p

6−pη(X + Y ) , τ̃ = −ie−
p

6−pη(X − Y ) , for p < 3 ,

τ = ie
p

6−pη(X + Y ) , τ̃ = −ie
p

6−pη(X − Y ) , for p > 3 .
(B.16)

To find regular solutions of the BPS equations we impose appropriate boundary
conditions in the IR. Guided by the physics of the MSYM theory on Sp+1 we look
for solutions in which close to some finite value of the radial coordinate r → rIR the
metric is that of (p+ 2)-dimensional flat space in spherical coordinates

ds2
p+2 ≈ dr2 + (r − rIR)2dΩ2

p+1 . (B.17)

In the UV region, i.e. for large values of r, the solution should approach the flat
brane domain wall solution for which X = 1 and Y = 0. The scalar fields should
approach a constant finite value in the IR. These IR values can be found as critical
points of the superpotential W (or W̃)

∂ηW = DτW = 0 , (B.18)
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which in terms of the scalars X, Y leads to the solutions in (3.12). The upper and
lower sign in (3.12) refers to a critical point of W and W̃ , respectively. For p = 4
the critical value of the superpotential is at the UV point X = 1.

B.1 Evaluation of κp+2

Here we provide a derivation of the Newton constant in p + 2 dimensions from the
one in ten dimensions by employing dimensional reduction. Consider the metric (3.1)
transformed to Einstein frame and evaluated in the UV, i.e.

ds2
E = g−1/2

s e−
(8−p)(p−3)

4(6−p) η

(
ds2

p+2 +
e

2(p−3)
(6−p) η

g2
dΩ2

8−p

)
. (B.19)

The type II supergravity action is given by

S10 =
1

2κ2
10

∫
d10x

√
−g(10)R(10) + · · · , (B.20)

where the dots represent other terms in the Lagrangian which are not important for
the present discussion and κ2

10 = (2π`s)8

4π
. The (p+2)-dimensional supergravity action

obtained from this action is

Sp+2 =
1

2κ2
p+2

∫
dp+2x

√
−g(p+2)R(p+2) + · · · , (B.21)

The goal is now to obtain κ2
p+2, i.e. the Newton constant on the (p+ 2)-dimensional

space. To do this we insert the metric (B.19) in the ten-dimensional action and
integrate over the internal (8 − p)-dimensional space. Doing this results in a warp
factor which we eliminate by performing the conformal transformation

g̃µν = g−1/2
s e−

(8−p)(p−3)
4(6−p) ηg(10)

µν ,
√
−g̃R̃ = g−p/2s e−

p(8−p)(p−3)
8(6−p) η

√
−g(10)R(10) . (B.22)

This transformation exactly removes all factors of the function η from the inter-
nal space and thus we find the unambiguously defined (p + 2)-dimensional Newton
constant

1

2κ2
p+2

=
1

2κ2
10

V8−p

g2
sg

8−p , (B.23)

where Vn−1 = 2πn/2/Γ(n
2
) is the volume of the unit n-sphere.

C Solution for d = 6

In this appendix we present an alternative derivation for the free energy and Wilson
loop expectation values of 6d MSYM theory that were obtained in Section 4. For
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this purpose we start with the saddle-point equation (4.47) in d = 6− ε dimensions.
After renormalization (4.48) of the coupling λb these equations reduce to

16π3

λQFT
Nσi = −3

∑
j 6=i

(σi − σj) log(σi − σj)2 . (C.1)

Notice that the r.h.s. of this equation describes repulsive interaction between eigen-
values at short distance of the eigenvalues and attractive at large distance. Hence in
order to have stable distribution of the eigenvalues with large size of the support we
should consider λQFT < 0 which is consistent with the conclusions of the Section 4.

In the continuous limit we as usually introduce eigenvalue density according to
(2.12) and rewrite saddle-point equation (C.1) as the following integral equation

− 16π3

3λQFT
σ =

b∫
−b

dσ′ρ(σ′)(σ − σ′) log(σ − σ′)2 . (C.2)

This equation has already appeared before in the context of 4d N = 2 theories in
[2, 4]. To solve it we should differentiate it twice w.r.t. σ in order to obtain

b∫
−b

dσ′
ρ(σ′)

σ − σ′
= 0 , (C.3)

which is the standard singular integral equation with Cauchy kernel. This equation
has the following unbounded normalizable solution

ρ(σ) =
1

π
√
b2 − σ2

, (C.4)

In order to define position of the support endpoint b we can use the following integral:

b∫
−b

dσ′
(σ − σ′) log(σ − σ′)2

π
√
b2 − σ′2

= 2σ log

(
be

2

)
. (C.5)

Comparison with (C.2) immediately gives

b = 2 exp

(
− 8π3

3λQFT
− 1

)
, (C.6)

which precisely reproduces expression (4.51) we have obtained previously considering
ε → 0 of general expression (2.15). It is also worth noticing that the eigenvalue
density (C.4) which solves (C.2) is consistent with the ε → 0 limit of the general
expression (2.14) provided we also use coupling renormalization (4.48). On Fig.8 we
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Figure 8: The eigenvalue distribution of 6d MSYM for N = 100 and λQFT = −20. In
particular the orange dots correspond to the numerical solution of (2.6) at λb = 0.42
and d = 5.995 (ε = 0.005). The latter parameters correspond to λQFT = −20
according to (4.48). The red dots in turn correspond to the numerical solution of
(C.1) at N = 100 and λQFT = −20. Finally the dashed blue line shows the eigenvalue
density (C.4) with the endpoint position b given by (C.6).

also compare numerical solutions of equations (C.1), (2.6) and analytical solution
(C.4). As we see solutions to the equation (2.6) with full kernel agrees with the
solution of (C.1) when d is close to 6. Also the solution (C.4) describes both numerical
solutions very well.

Finally to find the free energy instead of substituting eigenvalue density (C.4)
into free energy functional we notice the following identity

1

N2

∂F

∂λr
= − 8π3

λ2
QFT

b∫
−b

ρ(σ)σ2 = − 16π3

λ2
QFT

e
− 16π3

3λQFT
−2

(C.7)

Integrating this identity we easily obtain

F

N2
= −3e

− 16π3

3λQFT
−2
, (C.8)

which exactly reproduces expression in (4.50). Wilson loop we will obtain from (C.4)
and (C.6) will obviously also reproduce previously obtained result (4.52).
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D Solutions for d = 7

D.1 An alternative derivation for the eigenvalue density

In this part of the appendix we present an alternative way to analyze the matrix
model (2.4) for the d = 7 case. For this purpose we have to solve the saddle point
equation (2.13)

C1

λQFT
σ = C2

∫ b

−b
dσ′ρ(σ′)|σ − σ′|2sign(σ − σ′) (D.1)

with the regularized ’t Hooft coupling λQFT which we assume is small and negative
such that the eigenvalues are in general widely separated. The integral equation in
(D.1) is closely related to the saddle point equation of the matrix model for five-
dimensional SYM in the decompactification limit, i.e. when the radius R of S5 is
taken to infinity. A detailed analysis of this matrix model can be found in [42].

To solve (D.1) we differentiate both sides of the equation twice with respect to
σ. This leads to the simple equation∫ b

−b
dσ′ρ(σ′)sign(σ − σ′) =

∫ σ

−b
dσ′ρ(σ′)−

∫ b

σ

dσ′ρ(σ′) = 0 . (D.2)

This equation should be satisfied for any σ on the support, but this is possible only
if the eigenvalue density ρ(σ) is zero everywhere except at the support endpoints,
±b. Hence, we can assume the following form for the solution,

ρ(σ) =
1

2
(δ (σ + b) + δ (σ − b)) , (D.3)

where the factor of 1/2 is introduced to normalize the eigenvalue density. The end-
points of the distribution can then be found by substituting the density (D.3) back
into the integral equation (D.1). This then results in the simple algebraic equation

C1λ
−1
QFTσ =

1

2
C2

[
(σ + b)2 − (σ − b)2] , (D.4)

which, using (2.6) and (2.10), leads to

b =
1

2λ

C1

C2

= − 2π3

λQFT
. (D.5)

The final expression agrees with (4.73) determined from the general expression. One
can also easily obtain the free energy in (4.75) using the distribution in (D.3) and
the value of b in (D.5).

Note that we can also derive the δ-function behavior in (D.3) directly from the
expression for the density in (2.14). If we let d = 7 − ε then it is straightforward
to see that the density approaches zero in the limit ε → 0, everywhere except at
σ = ±b.
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Figure 9: Eigenvalue distribution of 7d MSYM for N = 400 and λQFT = −1 and
λQFT = −3. In the left panel we compare numerical results for λQFT = −1 against the
eigenvalue density (D.3), while on the right panel we compare numerics for λQFT =
−3 against the analytical solution (D.13). The latter one takes into account the finite
width of the eigenvalue support.

D.2 Numerical solutions at weak negative coupling

In this part of the appendix we analyze numerically the solution to (2.6) for d = 7
and a weak negative renormalized ’t Hooft constant. Here we solve a “heat equation”
numerically17, which at large “times” approaches asymptotically the solution to the
saddle point equation below in (D.17). However, we also assume that the solution is
symmetric around the origin, i.e. for each eigenvalue σi there is another eigenvalue
−σi. As can be seen from Figure 9 (a), which compares the numerical and analytical
results, the solution in (D.3) indeed reproduces the behavior of the eigenvalue distri-
bution at weak negative coupling. Notice that the graph is for λQFT = −1 which is
not very small. Our solution works whenever |λQFT|

4π3 � 1, which obviously holds for
λQFT = −1.

For −λ−1
QFT � 1

4π3 the eigenvalue distribution separates into two widely separated
peaks according to (D.3) with distance 4π3

|λQFT| between them. However if we include
subleading terms in the kernel we can argue that the peaks are actually humps with
a width of order 1. Including the next term, G(7)

16 (σ) in (4.74) has the expansion

G
(7)
16 (σ) = 2π(1− σ2)sign(σ) + O(e−π|σ|) . (D.6)

At this order in the approximation there is a repulsive force at short distance which
smears the peaks into finite size humps. To estimate the size of these humps we note
that the eigenvalue distribution is even about σ = 0. Hence, assuming that N is

17See [42] for a more detailed explanation of the numerical techniques.
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even, we can express the eigenvalues as

σi = −σ0 − δσi 1 ≤ i ≤ N/2 ,

σi = σ0 + δσN−i N/2 + 1 ≤ i ≤ N . (D.7)

Here we assume that σ0 � |δσi| and

N/2∑
i=1

δσi = 0 , (D.8)

to keep the center of mass of the eigenvalues on each hump fixed at±σ0. The equation
of motion in (2.6) for the positive eigenvalues can then be well approximated as

4π3N

λQFT
(σ0 + δσi) =

N/2∑
j 6=i

[
1− σ2

ij

]
coth (π σij) +

N/2∑
j=1

(1− (2σ0 + δσi + δσj)
2) . (D.9)

Setting σ0 = −2π3

λ
, (D.9) reduces to

− 1 =
2

N

N/2∑
j 6=i

([
1− σ2

ij

]
coth (π σij)− σ2

ij

)
, (D.10)

where the condition on the sum in (D.8) is also imposed. This last equation has no
λ dependence and we can expect that the σi range over a size of order 1. This can
be confirmed numerically as can be seen in Figure 9 (b).

In Figure 9 (b) we can see an exponential fall-off of the humps. We can capture
this behavior using the expression (D.6) for the kernel. In this case the continuous
limit of (2.6) can be written as

4π3

λQFT
σ =

∫ σ

−b
(1− (σ − σ′)2)ρ(σ′)dσ′ −

∫ b

σ

(1− (σ − σ′)2)ρ(σ′)dσ′ . (D.11)

Taking three derivatives with respect to σ on both sides of the equation gives

2 ρ′′(σ)− 4ρ(σ) = 0 , (D.12)

hence
ρ(σ) =

k√
2

cosh
(√

2σ
)
, (D.13)

with the constraints

1 =

∫ b

−b

k√
2

cosh
(√

2σ
)
dσ = k sinh

(√
2 b
)
, (D.14)

4π3

λQFT
=
√

2k
(

cosh
(√

2 b
)
−
√

2 b sinh
(√

2 b
))

. (D.15)
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Using (D.14) we can rewrite (D.15) as

sinh
(√

1 + k2 − t
)

=
1

k
, (D.16)

where t ≡ 2
√

2π3/λQFT. For a given λQFT one can solve (D.16) for k numerically, and
thus determine ρ(σ) in (D.13). The dashed line in Figure 9 (b) shows this density at
λQFT = −3.

D.3 Solutions at weak negative coupling and finite N

In this part of the appendix we consider d = 7 solutions at finite N . For small
negative regularized coupling we can use the approximate equations of motion in
(2.11), which for d = 7 are

− 4π3N

λQFT
σi =

∑
j 6=i

σ2
ijsign (σij) . (D.17)

Assuming that N is even, the solution that corresponds to the large N solution in the
previous subsection has N/2 eigenvalues at σ+ = b7 = − 2π3

λQFT
and N/2 at σ− = −σ+.

However, if we put 2M eigenvalues at σ = 0, then we can also satisfy (D.17) if we
place N/2−M eigenvalues at σ+ = − 2π3

λQFT

N
N−M and the same number at σ− = −σ+

18. We have ignored short range interactions here, but as is shown in the previous
subsection they only spread the eigenvalues an order 1 distance from the peaks.

The free energy for these more general solutions is given by

F =
16π10N2

3λ3
QFT

(
1− M2

(N −M)2

)
, (D.18)

demonstrating that the free energy increases with increasing M since λQFT < 0.
Assuming that λQFT is also small (D.18) shows that the solutions with nonzero M
are heavily suppressed. If N is odd then M is replaced with M + 1/2 in (D.18).

The quadratic fluctuations about the lowest energy solution are

δF =
4π4N

λQFT

∑
i

(δσi)
2 + 2π

∑
j 6=i

|σi − σj|(δσi)2 − 2π
∑
j 6=i

|σi − σj|δσiδσj

=
4π4

λQFT

N/2∑
i

δσ
(+)
i

N/2∑
i

δσ
(−)
i

 , (D.19)

where δσ(+)
i are the fluctuations of the eigenvalues at σ+ and δσ(−)

i are the fluctua-
tions of the eigenvalues at σ−. Hence, to quadratic order there is a tachyonic mode

18There are still other solutions, e. g. one can have an unequal number of eigenvalues at σ+ and
σ−, in which case σ− 6= −σ+.
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corresponding to the overall center of mass motion, which is not present for SU(N),
and a positive mode corresponding to the average of the left and right eigenvalues
moving in the opposite direction. This latter mode has a large positive coefficient
and thus is sharply suppressed. All other modes are zero modes.

The zero modes are not exact as there are nonzero cubic terms. Since the center
of mass modes are either removed or suppressed, we can assume that

∑
i δσ

(+)
i =∑

i δσ
(−)
i = 0. Then the fluctuations of the free energy are

δF =
π

3

N/2∑
i,j

(
|δσ(+)

i − δσ(+)
j |3 + |δσ(−)

i − δσ(−)
j |3 + 2(δσ

(+)
i − δσ(−)

j )3
)

=
π

3

N N/2∑
i

(δσ
(+)
i )3 +

N/2∑
i,j

|δσ(+)
i − δσ(+)

j |3


+
π

3

−N N/2∑
i

(δσ
(−)
i )3 +

N/2∑
i,j

|δσ(−)
i − δσ(−)

j |3
 , (D.20)

where we see that right and left fluctuations decouple from each other. Note that
these fluctuations are of order 1 and independent of λQFT, hence their only effect
is to shift the free energy by an unimportant constant and can be ignored even for
small N .
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