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We study straight vortices with global longitudinal currents in the Bogomolny limit of the Abelian
Higgs model with two charged scalar fields. The model possesses global SU(2) and local electromag-
netic U(1) symmetries spontaneously broken to global U(1) group, and corresponds to a semilocal
limit of the standard electroweak model. We show that the contribution of the global SU(2) cur-
rent to the vortex energy is proportional to the total current squared. Locally, these vortices carry
also longitudinal electromagnetic currents, while the total electromagnetic current flowing through
a transverse section of the vortex is always zero. The vortices with high winding numbers have, in
general, a nested pipelike structure. The magnetic field of the vortex is concentrated at a certain
distance from the geometric center of the vortex, thus resembling a “pipe.” This magnetic pipe is
layered between two electrically charged pipes that carry longitudinal electric currents in opposite
directions.

PACS numbers: 03.75.Mn, 03.75.Lm, 12.15.-y

I. INTRODUCTION

Certain extended topological defects are able to sup-
port longitudinal currents. A well-known example of
such a defect is the Abrikosov–Nielsen–Olesen vortex so-
lution [1] in a U(1)× U(1) model [2]: the corresponding
vortex string may carry both bosonic and fermionic su-
perconducting flows of large magnitude. Loops of these
superconducting strings may have various cosmological
consequences [3].
The extended topological structures with longitudinal

currents appear also at much smaller scales in the context
of condensed matter physics. For example, vortices that
carry longitudinal superfluid flow in a superfluid 3He-A
were proposed theoretically in Ref. [4]. Later, certain
signatures of these stringy objects, known as w vortices,
were found in nuclear magnetic resonance experiments [5]
(see Ref. [6] for a detailed review).
The symmetry patterns and the zoo of the topologi-

cal defects in the superfluid 3He have a lot in common
with the corresponding properties of the standard elec-
troweak model in particle physics [7]. Thus it is not sur-
prising that one of the most interesting realizations of the
current-carrying strings in the field theory context ap-
pears in the standard model of electroweak interactions.
This model supports various (embedded) topological de-
fects including well-known Z- and W vortices [8, 9]. In
a semilocal limit of the model (characterized by a spe-
cial value of the Weinberg angle, θW = π/2) these vortex
solutions are known to carry persistent longitudinal cur-
rents of isocharge associated with the global symmetry
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subgroup [10]. The word “semilocal” indicates that the
symmetry group of the model is a product of the local
electromagnetic group, Ue.m.(1), and the global isosym-
metry group, SUI(2). In this limit the original non-
Abelian gauge group decouples from the scalar fields, and
the resulting theory is basically the Abelian Higgs model
with two complex scalar fields.
Beyond the semilocal limit (i.e., at any value of Wein-

berg’s angle) the current-carrying solutions were con-
structed in Refs. [11, 12] and evidence of their pertur-
bative stability was found [12]. We refer an interested
reader to the reviews [13] and [14] for an extended discus-
sion of the vortex solutions in the standard electroweak
model.
In the semilocal limit the vortices with nonzero longi-

tudinal isocurrents exist only in type–II regime [10] be-
cause the energy per unit vortex length of such vortices
diverges as the system approaches the boundary between
type-II and type-I superconductivity. This boundary is
known as the Bogomolny limit [15]. General vortex so-
lutions without longitudinal currents were described in
the Bogomolny limit of the semilocal model in Ref. [16].
The (iso)charged vortex solutions with persistent longi-
tudinal currents were found in the same limit in Ref. [17].
We continue this line of investigation by studying in de-
tails the current-carrying vortex solutions in the Bogo-
molny limit of the Abelian with two Higgs fields. We
concentrate on the current-carrying vortices with multi-
ple winding numbers because these vortices – contrary to
the elementary vortices with a unit winding number [17]
– do have a finite energy per unit vortex length.
Our study is also motivated by the (theoretically an-

ticipated and/or experimentally found) existence of var-
ious systems with multiple-component order parameters
such as the already mentioned superfluid 3He [6], two-
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component Bose-Einstein condensates [18], two-band su-
perconductors that includes the well-studied system of
MgB2 [19], liquid metallic hydrogen [20], two-component
plasmas [21] etc.
The structure of this paper is as follows. In Sec. II

we describe the Abelian model with two charged scalar
complex fields. This model admits vortex solutions to the
classical equation of motion, which are drastically simpli-
fied in the Bogomolny limit. Section III is devoted to the
illustration of various multivortex solutions in this limit.
We concentrate on the vortices with high winding num-
bers which have a “pipelike” structure: the magnetic field
in such vortices is nonzero only in a thin region located
at a certain fixed distance from the geometrical center of
the vortex. In Sec. IV we introduce a longitudinal wave
along the vortex and check that this wave corresponds
to a current-carrying solution that satisfies the original
(second-order) classical equations of motion. Finally, in
Sec. V we calculate the energy per unit length of these
vortices. The last section is devoted to our conclusion.

II. TWO-COMPONENT MODEL

The Lagrangian of the two-component Ginzburg-
Landau model is

L = −
1

4
FµνF

µν +
1

2
|DµΦ|

2
− λ

(

|Φ|2 − η2
)2

, (1)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor of
the Ue.m.(1) gauge field Aµ andDµ = ∂µ+ieAµ is the cor-
responding covariant derivative, and |Φ|2 ≡ ρ2 = Φ†Φ.
The scalar field Φ has two complex-valued components,

Φ =

(

ρ1 e
iϕ1

ρ2 e
iϕ2

)

≡ ρ

(

eiϕ1 cos θ
eiϕ2 sin θ

)

, (2)

where we introduced the parametrization in terms of the
two phases ϕ1,2 ∈ [−π, π), two condensates ρ1,2 with

ρ =
√

ρ21 + ρ22 , (3)

and/or the angular variable θ ∈ [0, π).
The model (1) possess the symmetry

G = SUI(2)× Ue.m.(1) , (4)

where SUI(2) group rotates the Higgs fields in the iso-
topic space,

SUI(2) :

{

Φ → UΦ ,
Aµ → Aµ ,

(5)

with U ∈ SUI(2), and the Abelian Ue.m.(1) group cor-
responds to the local electromagnetic symmetry which
affects the phases of the scalar field (2),

Ue.m.(1) :

{

Φ → eiγ(x)Φ ,
Aµ → Aµ − 1

e
∂µγ(x) .

(6)

According to Eq. (6) both components of the scalar
field (2) carry the same electric charge e.

The dimensionality of the symmetry group (4) indi-
cates that there are four conserved Noether currents. The
electric (super)current corresponds to the rotations in the
Ue.m.(1) direction,

Jµ ≡ ρ2jµ =
1

2i
[Φ†DµΦ− c.c.] . (7)

For the sake of further convenience we introduced here
the reduced electric current:

jµ = Jµ/ρ
2 . (8)

The three other Noether currents can be grouped into
the isovector field

~Kµ = 2eJµ~n− ρ2~n× ∂µ~n , (9)

~n =
Φ†~τΦ

Φ†Φ
, ~n2 = 1 . (10)

The isocurrent ~Kµ corresponds to the isospinor rotations
SUI(2). The unit isovector ~n – that is constructed with
the Pauli matrices ~τ = (τ1, τ2, τ3) – transforms in adjoint
representation of the SUI(2) subgroup (5). The Abelian
gauge transformations (6) leave both the isocurrent (9)
and the vector (10) intact.

It is convenient to make the rescaling,

Φ → ηΦ, Aµ → ηAµ, xµ →
xµ

eη
, (11)

so that all variables appear to be dimensionless. Then
the classical equations of motion of the model (1) are

∂µjµν + ρ2jν −
1

2
∂µfµν = 0 , (12)

−∂2ρ+
1

4
ρ ∂µ~n ∂µ~n+ ρjµj

µ − 4αρ
(

ρ2 − 1
)

= 0 , (13)

where we denoted α = λ/e2, and

jµν = ∂µjν − ∂νjµ , (14)

fµν = ~n · ∂µ~n× ∂ν~n , (15)

are the strength tensors for the (reduced) electric current
jµ, Eq. (8), and for the vector field ~n, Eq. (10), respec-
tively. Instead of the gauge-variant field Aµ we use below
the gauge-invariant electric current jµ as an independent
variable. The change from gauge-variant variables Aµ

and Φ to the gauge-invariant fields jµ, ~n and ρ, is com-
monly used in this model [22, 23].

Equations (12) and (13) are supplemented by the con-
servation laws of the electric current (7) and the isocur-
rent (9), respectively:

∂µJµ = 0 , ∂µ ~Kµ = 0 . (16)
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III. PIPELIKE VORTEX SOLUTIONS IN

BOGOMOLNY LIMIT

In this section we discuss known static straight vor-
texlike solutions to the classical equations of motion (12)
and (13). These vortices do not carry longitudinal cur-
rents so that the corresponding solutions depend only on
two-dimensional coordinates x1 and x2. Since all vec-
tors/tensors involving (at least one of) the components
µ = 0, 3 are zero, the system becomes effectively two-
dimensional.
In a special limit,

α ≡
λ

e2
=

1

8
, (17)

the classical equations of motion (12) and (13) reduce to
a simpler system of differential equations:

∂i~n+ ǫij [~n× ∂j~n] = 0 , (18)

1

x

∂

∂x

[

x
∂

∂x
(log ρ)

]

+
1

2
(ρ2 − 1)−

f12
2

= 0 , (19)

where x = |~x|. The expressions for the electric current (7)
and the isocurrent (9) are simplified as well:

Ji = −ǫijρ ∂jρ , ~Ki = −ǫij∂j(ρ
2~n) . (20)

The special choice of couplings (17) is known as the Bo-
gomolny limit [15]. The vortex solutions of the “semilo-
cal” Abelian two-Higgs model – that were first found
in Ref. [8] – were subsequently studied in this limit in
Refs. [9, 16]. A general solution to the classical equa-
tions of motion in the Bogomolny limit (17) has a nonzero
condensate (3) at its origin and in general is dubbed as
“skyrmion” (for a detailed review see Ref. [13]).
In the Bogomolny limit the magnetic flux of the vortex

is quantized:

F ≡

∮

C∞

dxi Ai =

∫

d2xB =
2π

e
k , k ∈ Z , (21)

where

B = F12 ≡ j12 −
1

2e
f12 =

e

2
(1− ρ2) , (22)

is the magnetic field of the vortex. The first integration
in Eq. (21) is taken over the spatial contour C∞ with an
infinitely large radius. The last relation in Eq. (22) is
supported by equations of motion (19) and Eq. (20).
The string tension (i.e., the vortex energy per its unit

length) is quantized as well (we restore η for a moment):

σ =

∫

d2x

[

1

2
B2 + |DiΦ|

2 + λ
(

|Φ|2 − η2
)2
]

=
eη2

2
|F| ≡ πη2|k| , (23)

where i = 1, 2 are two-dimensional indices in the trans-
verse (with respect to the straight vortex) plane.

The validity of the quantization (21) can be checked
in the angular parametrization of the scalar field (2).
The energy functional (23) contains the scalar derivative
squared,

|DiΦ|
2 = (∂µρ)

2 + ρ2(∂iθ)
2 + J2

i (24)

+
ρ2

4
sin2 2θ [∂µ(ϕ2 − ϕ1)]

2 ,

For the energy to be finite, a vacuum state is to be re-
alized at the spatial infinity. This means that all four
terms in Eq. (24) should be zero: the variables θ and
ρ 6= 0 should be independent of the coordinates, and the
electric current,

Ji = ρ(eAi + cos2 θ∂iϕ1 + sin2 θ∂iϕ2) , (25)

should be vanishing at spatial infinity. Moreover, if at
spatial infinity the angle θ does not take the specific val-
ues, θ∞ 6= 0 and θ∞ 6= π/2, then the two phases of the
Higgs fields should be equal, ϕ1 = ϕ2. We then recover
the quantization of the magnetic flux (21), where the
number k gets interpreted as common winding number
of the phases ϕ1 and ϕ2. If either θ∞ = 0 or θ∞ = π/2,
then ϕ1 6= ϕ2 and at large distances the winding number
is carried either by ϕ1 or by ϕ2, respectively.
Using a stereographic projection one can parametrize

the vector ~n, Eq. (10), by a complex function u = u(z)
with z = x1 + ix2:

n1 + in2 =
2u

1 + |u|2
, n3 =

1− |u|2

1 + |u|2
. (26)

Then the first equation of motion (18) is satisfied auto-
matically provided u is a meromorphic function [16].
For a vortex located at the origin of the two-dimen-

sional plane, the following boundary conditions are to be
implied:

lim
z→∞

~n = (0, 0, 1)T , lim
z→0

~n = (0, 0,−1)T , (27)

where the first relation is the choice of the vacuum state.
In terms of the function u the conditions (27) read as

u(z = 0) = ∞ , u(z = ∞) = 0 . (28)

The suitable meromorphic function is

u =
(a

z

)k

, (29)

where k is the mentioned winding number and

a = eηRvort (30)

is a dimensionless parameter which defines the size Rvort

of the vortex core. This parameter is equivalent to the
parameter ξ0 of [9] and to the parameter |q0| of [16].
Substituting the solution (29) into Eq. (26) and, sub-

sequently, into Eq. (15), one gets an expression for f12.
Then, introducing a normalized coordinate

ξ =
x

a
≡

r

Rvort
, (31)
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we rewrite the second equation of motion (19) as follows:

1

ξ

∂

∂ξ

[

ξ
∂

∂ξ
(log ρ)

]

+
a2

2
(ρ2 − 1) =

2k2ξ2k−2

(ξ2k + 1)2
. (32)

This equation fixes the behavior of the scalar conden-
sate ρ as a function of distance from the vortex center ξ,
Eq. (31); for fixed vorticity k, Eq. (21); and for the fixed
size of the vortex core a, Eq. (30).
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FIG. 1. Condensate ρ at the distance r from the vortex center
for various sizes (thicknesses) of the vortex cores Rvort = a/eη.
The vortices have vorticity numbers k = 1 (top), k = 2 (mid-
dle), and k = 10 (bottom).

The solutions of Eq. (32) can be found numerically. In
Fig. 1 we show the condensate ρ, Eq. (3), for a vortex

carrying a single unit of the flux, k = 1 (the plot at
the top); a double-flux vortex, k = 2 (the plot at the
middle); and the high-vorticity solution, k = 10 (the plot
at the bottom). One can observe that while the single-
flux solutions ρ = ρ(ξ) are always monotonic, the higher-
flux solutions are not. A nonmonotonic density variation
but for a different kind of vortices in a two-component
model was also found in Ref. [26]. The solutions with a
large-sized core (a ≫ 1) and with a large flux (k = 10
in our example) have a well-recognized minimum around
r ≈ Rvort.

 0
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η
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k=10

a=10

a=4
ρ
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FIG. 2. Condensates ρ, ρ1 and ρ2 in high-vorticity (k = 10)
solutions with two sizes a = eηRvort of the vortex cores.

The condensates for these vortex solutions are nonzero,
ρ 6= 0, both at their centers, r = 0, and at spatial infini-
ties, ρ → ∞. As for the individual condensates, the ρ1
condensate is vanishing at the center, while the ρ2 con-
densate is zero at spatial infinity. This particular pat-
tern of the condensates in the vortexlike solution is quite
common for many-component systems. It appears in par-
ticle physics in the context of the standard electroweak
model [13], and in the condensed matter physics: the cor-
responding structures were experimentally observed in a
two-component condensate of 87Rb atoms [18]. We plot
the individual condensates of two solutions with a = 4
and a = 10 for the k = 10 vortex in Fig. 2.
In general, the magnetic field (22) of a vortex with a

multiple vorticity is concentrated outside the center of
the vortex. In Fig. 3 we show the density plots of the
magnetic field in the transverse (x1, x2) plane for k = 10
vortices of different sizes Rvort. One can clearly see that
the maximum of the magnetic field (darker regions) is
distributed in a (generally) cylindrical thin region of the
radius R ≃ Rvort ≡ a/eη. Thus, the magnetic field of the
vortex is concentrated, basically, within a thin pipe of
the radius Rvort. The magnetic field inside and outside
the pipe is zero. A possible existence of similar solutions
with pipelike (“helical”) structure in this model was dis-
cussed in [25]. The annular vortex solutions that some-
what resemble our pipelike solutions were also discussed
in Refs. [23, 24].
The pipelike structure is well pronounced for large



5

FIG. 3. Strength of the magnetic field (22) in high-vorticity
(k = 10) solutions in the transverse plane. Various sizes of the
vortex cores Rvort = a/eη are shown. The spatial coordinates
are given in units of eη.

(a ≫ 1) vortices with high-vorticity numbers. In a dif-
ferent context, vortices with high winding numbers were
also studied in the standard electroweak model in [27].
Let us now consider the spatially-transverse compo-

nent of the conserved isovector current (9) which cor-
responds to the flow of the global SUI(2) charge. The
diagonal (in the isospace) component of this current is

K
(3)
i (ξ; k, a) = −

εij
a

xi

ξ

∂

∂ξ

[ξ2k − 1

ξ2k + 1
ρ2(ξ; k, a)

]

. (33)

In the polar coordinates of the transverse plane, the ra-
dial component of the transverse isocurrent (33) is zero,

K
(3)
r = 0. The angular component of this current is plot-

ted in Fig. 4 for a few vortices with the large (fixed) wind-
ing number k = 10. The angular component exhibits a
familiar pipelike structure with two peaks at moderate
values of the vortex size a. These peaks are merged into
one peak at larger values of a.

IV. LONGITUDINAL CURRENTS

The vortices may host certain waves that propagate
freely along the vortices. The simplest way to introduce
such a wave is to generalize the meromorphic function
u [given, for a static solution, by Eq. (29)] as follows
(remember that z = x1 + ix2):

u
(

x1, x2, x3, x4

)

=
(a

z

)k

ei(ωx0−p3x3) . (34)

Here the wave frequency ω ≡ p0 and the wave momentum
p3 are two unknown parameters. According to (11), in

a=4
a=6

k=10a=10

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

r�Rvort

e
K
Φ
�
Η

3

FIG. 4. The spatially transverse diagonal isocurrent (33) for
vortices of various sizes a with a large winding number k = 10.

Eq. (34) the wave frequency ω and the wave momentum
p3 are given in units of eη.
According to Eq. (26) the ansatz (34) corresponds (up

to a gauge transformation) to the following behavior of
the scalar doublet (2):

Φ =

(

ρ1(r) e
ikϕ

ρ2(r) e
i(p3x3−ωx0)

)

. (35)

Here r and ϕ are the polar coordinates in the transverse
plane and ρ1,2 are certain functions of r. The form of
Eq. (35) is essentially the same as in Refs. [10] and [17].
The ansatz (34) for the meromorphic function u(z) was
used in a different context in a O(3) model in Ref. [28].
In analogy with the previous section, we substitute

the ansatz (34) into the classical equations of motion,
(12) and (13) using Eq. (26). The new equations also in-
clude the electric density, J0, and the longitudinal elec-
tric current J3, that are treated in these equations as
the unknown independent functions. However, one can
immediately figure out that the second-order differential
equations (12) and (13) are self-consistent provided that

ω = ±p3 , J0(x) = ∓J3(x) ≡ jρ2 . (36)

The first relation in Eq. (36) indicates that the longi-
tudinal current is carried by massless waves. The second
relation means that the regions with nonzero electric cur-
rent density are always electrically charged. The signs in
Eq. (36) distinguish between two possible directions of
the wave propagation along the vortex.
The presence of the longitudinal currents does not in-

fluence the behavior of the condensate ρ = ρ(r) because
Eq. (32) is valid in the J0 6= 0 case. The transverse
components, µ = 1, 2, of the electric current Jµ are not
modified by the presence of the longitudinal current as
well, and Eq. (20) remains unaffected. As for the longitu-
dinal components, the (reduced) electric charge density
j ≡ J0/ρ

2, Eq. (8) – or, equivalently, the longitudinal
current density, Eq. (36) – is determined by the follow-
ing differential relation:
[

∂2

∂ξ2
+

1

ξ

∂

∂ξ
− a2ρ2(ξ)

]

j(ξ) =
4ωk2ξ2k−2

(ξ2k + 1)3
(ξ2k − 1). (37)
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A. Longitudinal electric current

The total longitudinal electric current Itot3 ≡
∫

dx1dx2J3 streaming through any transverse plane
of the vortex, and the total electric charge ̺tot ≡
∫

dx1dx2J3 per unit vortex length are both zero. Indeed,
an integration of the left- and right-hand sides of Eq. (37)
over the spatial coordinates of the two-dimensional trans-
verse plane gives us the vanishing result:

̺tot = ±I3 ≡

∫

d2r j(r)ρ2(r) = 0 . (38)

Here we used the second equation in (36) and noticed
that ξ ∂

∂ξ
j(ξ) → 0 in the limits ξ → 0 and ξ → ∞.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3  3.5

B
/(

e
η2 ),

   
 J

/(
ω

 η
2 )

r/Rvort

k=10

J, a=4
B, a=4

J, a=10
B, a=10

FIG. 5. Magnetic field B (the dashed lines) and the longitu-
dinal electric current J (the solid lines) in the k = 10 vortex
as the function of the radius r. The red/thin (blue/thick)
lines correspond to the vortex of the size a = 4 (a = 10).

Despite the total electric current flowing through any
transverse plane is zero, the local structure of the vortex
in terms of electric currents is, however, nontrivial. In
Fig. 5 we plot the density of the electric current and the
strength of the magnetic field as functions of the distance
to the vortex with the vorticity k = 10. We show these
quantities for two vortices with the sizes a = 4 and a =
10. In both cases the electric current changes the sign
at a certain nonzero distance R0 from the center of the
vortex,

J(R0) = 0 , 0 < R0 < ∞ . (39)

For a typical vortex the alternation of the current takes
place at the value of the radius, that is approximately
equal to the size of the vortex core, R0 ≃ Rvort. As
one can see from Fig. 5, it is the very radius where the
magnetic field takes its maximum. The density of the
current is positive in the inner core of the vortex, r .
Rvort and negative in the outer space, r & Rvort.
In Fig. 6 we show a two-dimensional plot of the dis-

tribution of the electric current in the transverse plane
of the k = 10 vortex of the size a = 10. The current is
concentrated in the two nested narrow pipes that have

FIG. 6. The density of the longitudinal current – and, equiv-
alently, the electric charge density – in the transverse plane
of the k = 10 vortex of the size a = 10. The inner (red)
pipe corresponds to the electric current flowing in the posi-
tive direction, while outer (blue) pipe denotes the density of
the negatively directed current. There is almost no current
inside the inner pipe and outside the outer pipe and also in
between these two pipes.

relatively large diameters. The electric current is almost
zero outside these pipes. Notice, that due to Eq. (36) the
current-carrying pipes are also electrically charged. The
electrically charged pipes enclose the pipe of the mag-
netic field, which was visualized in the lower right plot
of Fig. 3. The interior and exterior of the vortex are
oppositely charged, as illustrated in Fig. 6.
The distribution of the transverse electric currents in

the transverse plane have a qualitative similarity with
the distribution of the longitudinal currents, Fig. 3. The
transverse currents – defined by the first relation in
Eq. (20) – rotate in opposite directions inside and out-
side the pipe of the magnetic field. The transverse cur-
rent density vanishes approximately at the radius of the
magnetic pipe, similarly to the density of the longitudinal
currents. These properties are the natural result of the
nonmonotonic behavior of the condensate ρ(r), Fig. 1.
Physically, the outer current (say, circulating the vortex
clockwise) generates the magnetic field along the z axis
in an “outer” tube of a certain radius. The inner current
(that rotates in the counterclockwise direction) leads to
appearance of the magnetic field in the opposite direc-
tion in the “inner” tube. Since the inner and outer tubes
have different radii, the resulting profile of the magnetic
field has a maximum at a certain nonzero radius, thus
forming a pipelike structure.
The total positive and negative longitudinal current,

I(±) = ±I∓, can be calculated by integration over, say,
the interior of the vortex core:

I ≡ |I(±)| =

∫

r6R0

d2r J(r) , (40)

where we take, for definiteness, J(r) > 0. The radius
R0 is defined as a nonzero finite distance from the vortex
center at which the electric current vanishes (39). The
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integrated current (40) is shown in Fig. 7 as a function
of the vortex size a for a few fixed vorticities. For small
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FIG. 7. The net positive/negative current (40) carried by
interior/exterior of the vortex with the winding number k vs
the vortex size a = eηRvort. The inset shows zoom in on the
region with a < 1.

vortices, a . 1, the total positive/negative current is very
small. However, the inner and outer pipes of the thick
vortices, a & 1 may carry rather strong electric current.
Moreover, the larger the transverse size of the vortex the
stronger is the electric current [29].

Summarizing this section, we visualize the internal
structure of the pipelike vortex in Fig. 8. The magnetic
field has a pipelike profile shown by the green surface
which is sandwiched in between two other pipes. The
inner and outer pipes carry the electric currents in pos-
itive (shown by the red surface) and negative (the blue
surface) directions, respectively. Since these electric cur-
rents in these pipes have both longitudinal and transverse
components, the three-dimensional structure of the elec-
tric currents resembles spirals which are also visualized
in Fig. 8.

FIG. 8. A graphical representation of the structure of a
thick (a ≫ 1) vortex with a high winding number (|k| ≫
1). The pipelike magnetic field – shown by the green surface
in the middle – is layered in between positive (inner) and
negative (outer) electrically charged pipes (shown by the red
and blue surfaces, respectively). These electric pipes carry
helical electric currents in opposite directions. The arrows
mark directions of the helical electric currents.

B. Longitudinal isocurrent

Now let us now consider the longitudinal components
of the conserved isovector current (9). According to
Eqs. (26) and (34), the off-diagonal components of the

isocurrent, K
(1)
µ and K

(2)
µ , are oscillating in time and

space because they depend linearly on periodic functions
cosϑ and sinϑ, where ϑ = ω(x0 ± x3) − ϕ. The diag-
onal components are time-independent quantities. The
longitudinal isocurrent is

K
(3)
3 (ξ; k, a) = −2ω

ρ2(ξ; k, a)

ξ2k + 1

[ ξ2k

ξ2k + 1

+(1− ξ2k)j(ξ; k, a)
∣

∣

∣

ω=1

]

. (41)

The isocharge density, K0, is linked with the longitudinal
isocurrent density, K3, in a manner of relation (36) for

the electric charge/current density: ~K3(x) = ± ~K0(x).
Both the isocharge density and the longitudinal isocur-
rent are proportional to the frequency parameter ω.
The longitudinal isocurrent (41) is shown in Fig. 9.

This current has a two-peak structure for all studied val-
ues of the core size a. The peaks are centered near the
values of the radius that approximately correspond to the
extremes of the longitudinal electric current, plotted in
Fig. 5 for a = 4 and a = 10.
In addition, Fig. 9 demonstrates that – unlike the or-

dinary electric current – the isocurrent density is either
positively or negatively valued. Thus, the net isocur-
rent streaming along the vortex is nonvanishing and the
vortex has a nonzero total isocharge. These global prop-
erties are qualitatively similar to the characteristics of
the solutions with low winding numbers that were found
in Refs. [10] and [17].

a=4

a=6

k=10a=10

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

r�Rvort

e
K

0�
HΩ
Η

2 L

FIG. 9. The longitudinal isocurrent (41) for vortices of vari-
ous sizes a with large winding number k = 10.

The absolute value of the total longitudinal isocurrent
which is carried by the vortex,

Ktot =

∣

∣

∣

∣

∫

d2r K
(3)
3 (r)

∣

∣

∣

∣

, (42)

is shown in Fig. 10 as a function of the vortex core size
a for a few values of the winding number k. The behav-
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FIG. 10. The net longitudinal isocurrent (42) vs the vortex
core size a = eηRvort for various winding numbers k.

ior of the new isocurrent (42) is similar to the net pos-
itive/negative electric current, Fig. 7. The total isocur-
rent is very small (at fixed ω) for small values of the
vortex core size a. At a particular vortex size a, the
isocurrent starts to grow quickly as a function of a. Then
it reaches a maximum, and, unlike the positive/negative
fraction of the electric current, the isocurrent slowly di-
minishes as the function of the vortex core size a. In
general, the larger is the winding number k, the smaller
is the net isocurrent.
Notice that the total longitudinal electric charge car-

ried by the solutions vanishes exactly (38) because this
current is generated by the local U(1) symmetry (6). The
net longitudinal isocurrent is not zero (42) since it carries
the charges corresponding to the global SU(2) subgroup
of the model (5).

V. ENERGY OF VORTICES

A. Contribution of longitudinal current

In this section we calculate the energy of the vortices
that is carried by the longitudinal currents in the Bo-
gomolny limit. The energy momentum tensor of the
Abelian two-Higgs model (1) is given by the following
equation,

Tµν = −gµνL − F σ
µ Fνσ (43)

+
1

2
(DµΦ)

†
DνΦ+

1

2
(DνΦ)

†
DµΦ ,

where gµν is the metric tensor. In the spherical isovector
representation (10) the energy density reads as follows:

T00 =
1

2
(∂0ρ)

2 +
1

2
(∂iρ)

2 +
ρ2

8
(∂0~n)

2 +
ρ2

8
(∂i~n)

2

+λ(ρ2 − 1)2 +
ρ2

2
j20 +

ρ2

2
j2i (44)

+
1

2

(

j0i −
1

2
f0i

)2

+
1

4

(

jij −
1

2
fij

)2

.

We integrate Eq. (44) over the transverse coordinates x1

and x2, imply the Bogomolny limit (17), and simplify
the expression using both integration by parts and the
corresponding equations of motion (18) and (18). As a
result, we get the vortex energy per unit vortex length:

σ(k, a) ≡

∫

d2xT00 = π|k|+ χ(k, a)ω2 . (45)

The first term in the right-hand side of Eq. (45) corre-
sponds to the energy of the vortex in the absence of the
electric current (23). The second part is the contribution
of the electric current to the vortex energy. This con-
tribution is proportional to the wave frequency square,
ω2 or, equivalently, to the square of the total isocurrent
carried by the vortex (42), or to the total electric current
in, say, the inner charged pipe of the solution (40).
The dependence of the energy on the current is gov-

erned by the dimensionless coefficient χ that can be sep-
arated into three parts:

χ(k, a) = χ1(k, a) + χ2(k, a) + χ3(k) . (46)

The first term in Eq. (46) is expressed via the conden-
sate ρ,

χ1(k, a) = 2πa2
∞
∫

0

dξ
ξ2k+1ρ2(ξ; k, a)

(ξ2k + 1)2
, (47)

while the second term can be determined via the electric
current density j

χ2(k, a) = 8πk2
∞
∫

0

dξ
(ξ2k − 1) ξ2k−1

(ξ2k + 1)3
j(ξ; k, a)

∣

∣

∣

ω=1
, .(48)

The third term can be calculated exactly:

χ3(k) = 8πk2
∞
∫

0

dξ
ξ4k−1

(ξ2k + 1)4
≡

2π|k|

3
. (49)

The energy of the vortex (45) saturates the Bogomolny
bound and it thus corresponds to the lowest possible en-
ergy for fixed parameters k, ω and a. Expressions (45)–
(49) correspond to the lower bound on energy calculated
previously in Ref. [10].
The first integral (47) diverges for k = 1. Indeed,

at large transverse distances ξ ≫ 1 the condensate
is distance independent, ρ ≃ 1, and the integral in
Eq. (47) becomes logarithmically divergent at large dis-

tances,
∫ ξmax ξ−1dξ ∼ log ξmax. Thus, finite-sized vor-

tices (a 6= 0) with a minimal winding number, k = 1,
cannot carry the longitudinal currents in the Bogomolny
limit. However, the vortices with higher vorticities,
k > 2, can support the longitudinal currents in the this
limit.
In the Bogomolny limit the energy of the currentless

vortex – given by the first term in Eq. (45) – is indepen-
dent of the vortex size a. Unexpectedly, in the presence
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of a longitudinal current the energy becomes dependent
on the vortex size parameter a. In Fig. 11 we plot χ as a
function of the vortex size a for the same set of vorticities
that was already selected for Fig. 7. Notice that despite
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FIG. 11. The coefficient χ that determines the contribution
of the electric current into the energy of the vortex (45). The
inset shows a zoom in on a low-a region.

the fact that the curves in Fig. 7 and in Fig. 11 look sim-
ilar on a qualitative level, they cannot be superimposed
on each other by simple scale transformations.
According to Fig. 11, the excess of energy provided by

the electric current is a monotonically increasing function
of the vortex size at relatively large size a of the vortex
core. A zoom in on the low-a region – shown in the inset
of Fig. 11 – reveals a very shallow minimum at the fixed
size of the vortex

amin ≈ 0.8 , or Rvort ≈
0.8

eη
, (50)

for all studied vorticities k > 2.
Thus, in the Bogomolny limit a vortex with a fixed

winding number k > 1 and a fixed frequency parameter
ω 6= 0 would tend to change its transverse size to the
value (50) that corresponds to the global minimum of
the vortex energy. According to the inset of Fig. 7, the
electric current at a ≃ amin is small but nonzero (we
remind that the current can be made arbitrarily large by
increasing the free parameter ω).
The vortex core tends to stabilize its transverse size

at the value (50) for which the nested-pipe structure of
the vortex interior cannot be resolved visually. This fact
is seen in the behavior of the condensate ρ of the a = 1
vortex with the vorticity k = 10 (lowest panel of Fig. 1),
or one can alternatively look at the magnetic field pro-
file of the same vortex in Fig. 3. However, the minimum
is very shallow so that a small perturbation – for exam-
ple, induced by a shift of parameters towards type-II su-
perconductivity – may shift the stability point to higher
values of the vortex core radius a.
The dependence of the vortex energy per unit vortex

length on the value of the electric current in one of the
pipes I is shown in Fig. 12. At very low values of the
current I the energy has a very shallow minimum which

k=10
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FIG. 12. The energy coefficient χ as a function of the (nor-
malized) absolute value of the electric current flowing in, say,
the inner charged pipe (40).

is visible in the plot of the k = 2 solution. At higher
values of the current the energy is a monotonically rising
function.

B. Rearrangement of vortex lattice

As we have already discussed, in the Bogomolny limit
the energy per unit vortex length of an elementary (k =
1) vortex is infinite at any finite ω, or, equivalently, at
any nonzero value of the longitudinal isocurrent. In the
absence of the external isocurrent the total energy of a
many-vortex configuration does not depend neither on
positions of vortices nor on their sizes in this limit. Now,
in a thought experiment, let us apply an external isocur-
rent Ktot along a configuration of an even number of
parallel elementary vortices. Because of energy consider-
ations it is clear that the elementary vortices would tend
to merge together and form a set of, at least, double
(k = 2) vortices that have a finite energy at the nonzero
isocurrent. Then each of the k = 2 vortices would tend
to adjust its transverse size a in such a way that the total
energy is minimal at the fixed value of the isocurrent [30].
Thus, the presence of an external isocurrent should gen-
erally lead to rearrangement of the vortex ensembles.
A nonzero isocurrent (41) corresponds to a combina-

tion of two electric currents – carried by up and down
components of the order parameter – for which the total
electric current is zero. Although a realization of such
an isocurrent in an experimental setup is an open issue,
our result suggests that the vortex lattice should be re-
structured under the influence of the external isocurrent
that is parallel to the external magnetic field. Also, our
result shows that the multiple merging of the elementary
vortices under the influence of the external isocurrent
may lead to a formation of a vortex with a high winding
number that exhibits the exotic “nested-pipe” structure.
We expect that our results are rather generic and they

should not be limited strictly to the particular limit (17)
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of the couplings. If the system is sufficiently close to
the Bogomolny limit, then we expect that an external
isocurrent would induce a rearrangement of the vortices
in this system.
One of the well-studied examples of the two-band su-

perconductor is MgB2 [19]. In external magnetic field
the vortex lattice in MgB2 has quite specific geometrical
patterns [31], that are imprinted by elementary vortices.
Such an inhomogeneous distribution of vortices in mul-
ticomponent systems was first predicted theoretically in
Ref. [32]. It would be interesting to check the effect of
the external longitudinal isocurrent on the properties of
the vortex lattice in this real material, which is rather far
from the Bogomolny limit (17).

VI. CONCLUSION

We found pipelike vortex structures in an Abelian
gauge model with two scalar condensates. This model
possesses global SUI(2) symmetry (isosymmetry) as well
as local Ue.m.(1) symmetry corresponding to the Maxwell
electromagnetism. The symmetry group is broken spon-
taneously to a global U(1) subgroup. The model pos-
sesses vortices that are linelike topological defects which
carry magnetic flux. We found that the vortices with
high winding numbers and with large sizes of the vor-
tex cores have the pipelike shape of the magnetic field:
the magnetic field is concentrated at a certain distance
from the geometric center of the vortex, thus resembling
a pipe.
For the sake of simplicity we were working in the Bogo-

molny limit of the model in which the classical equations
of motion are drastically simplified.
We show that nonelementary vortices in the Bogo-

molny limit of the model are able to support the lon-
gitudinal isocurrents that carry the isocharge along the
vortices. The isocharge corresponds to the conserved
Noether charge with respect to the diagonal component

of the global SUI(2) subgroup. The isocurrent is pro-
portional to the difference between the electric currents
carried by the upper and lower components of the order
parameter. The current-carrying vortex also possesses a
nonzero density of the isocharge localized in the vicin-
ity of the vortex core. The elementary current-carrying
vortices with unit vorticity have infinite energy per unit
length, while the energies of the current-carrying vortices
with multiple winding numbers are finite.
The total vortex energy is given by a sum of two terms.

The first contribution is the standard Bogomolny term
that is proportional to the magnetic flux inside the vor-
tex. The second term comes due to the presence of the
longitudinal current. This term is proportional to the
total isocurrent squared. The dependence of the vortex
energy on the isocharge current may lead to potentially
observable effects like, for example, rearrangement of the
positions of vortices in the vortex lattice of a two-band
superconductor.
The vortices with large transverse sizes and with high

winding numbers have a nested pipelike structure. In
addition to the mentioned “magnetic pipe” that carries
the magnetic flux of the vortex, the vortex also possesses
two electrically charged pipes of larger and smaller radii.
These “electric pipes” are oppositely charged and they
also carry longitudinal electric currents of equal strength
in opposite directions so that the net electromagnetic cur-
rent flowing through a transverse section of the vortex is
always zero. The magnetic pipe is always layered between
the two electric pipes.
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