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Abstract

We consider supersymmetric gauge theories on S5 with a negative Yang-Mills cou-
pling in their large N limits. Using localization we compute the partition functions and
show that the pure SU(N) gauge theory descends to an SU(N/2)+N/2×SU(N/2)−N/2×
SU(2) Chern-Simons gauge theory as the inverse ’t Hooft coupling is taken to nega-
tive infinity for N even. The Yang-Mills coupling of the SU(N/2)±N/2 is positive and
infinite, while that on the SU(2) goes to zero. We also show that the odd N case
has somewhat different behavior. We then study the SU(N/2)N/2 pure Chern-Simons
theory. While the eigenvalue density is only found numerically, we show that its width
equals 1 in units of the inverse sphere radius, which allows us to find the leading cor-
rection to the free energy when turning on the Yang-Mills term. We then consider
USp(2N) theories with an antisymmetric hypermultiplet and Nf < 8 fundamental
hypermultiplets and carry out a similar analysis. Along the way we show that the
one-instanton contribution to the partition function remains exponentially suppressed
at negative coupling for the SU(N) theories in the large N limit.ar
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1 Introduction

Negative couplings in supersymmetric gauge theories can have a perfectly well-defined in-
terpretation. One well known example is pure N = 1 SU(2) gauge theory in five dimensions
which has a real one-dimensional Coulomb branch [1]. At a generic value of the coupling
there is a topological U(1) global symmetry whose current is j = 1

32π2 ∗ (F ∧F ). The objects
charged under this symmetry are the instantons, which in five dimensions are particles with
mass given by mI = 4π2

g2
YM

. On the Coulomb branch the instantons are also charged under

the unbroken U(1) gauge symmetry which shifts the mass by the scalar expectation value φ.
At small positive coupling the instantons are very heavy, but become massless in the

UV at infinite coupling when sitting at the origin of the Coulomb branch. At this point
the theory is superconformal and the global U(1) symmetry is enhanced to SU(2) [1]. At
this SU(2) point one can implement a Weyl transformation that flips the direction of the
coupling, such that moving back down in the coupling moves it to the negative side. This
transformation also switches the instantons with the original W -bosons, such that the W -
bosons have a mass φ − 4π2

g2
YM

, while the instantons now have mass φ. At the origin of this

new Coulomb branch it is now the instantons that enhance the gauge symmetry to SU(2).
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(a) g2YM > 0

(b) g2YM < 0

Figure 1: (p, q) web for N = 1 SU(2) gauge theory at positive and negative coupling. D5
branes are (1, 0) branes and NS5 branes are (0, 1). The coupling is determined by the
positions of the fixed (±1, 1) external branes.

This story has a nice description in terms of (p, q) 5 branes as shown in Figure 1 [2, 3].
The instantons are D1 branes that stretch between the two NS5 branes, separated by a
distance 4π2

g2
YM

, while the W -bosons are F -strings that attach to the two D5 branes. As we

increase the coupling the NS5 branes move closer together. Moving through the fixed point
the roles of the NS5 branes and the D5 branes are exchanged.

To go to higher rank SU(N) gauge groups we add D5 branes to the diagram in Figure
1, as shown in Figure 2. In this case one can still pass through to negative coupling, but
there is no longer a symmetry between the positive and negative sides. However, there is
still interesting behavior. In particular, if we assume that N is even we see that at the origin
of the Coulomb branch the branes split into two groups of N/2, separated by −8π2

λ
where
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(a) g2YM > 0

(b) g2YM < 0

Figure 2: (p, q) web for N = 1 SU(N) gauge theory at positive and negative coupling with
N even. The webs represent the origin of the Coulomb branch. At negative coupling the D5
branes split into two groups of N/2.

λ = g2YMN is the ’t Hooft coupling. In the limit that −4π2

λ
approaches infinity, the two

sets of D5 branes move far apart from each other, with each half described by the web in
Figure 3, or its vertical reflection. This is the (p, q) web for an SU(N/2) gauge theory with a
five-dimensional Chern-Simons term at level k = N/2, while the vertical reflected web is at
level k = −N/2. Both gauge theories have infinite Yang-Mills coupling. Hence, the resulting
theory is SU(N/2)N/2×SU(N/2)−N/2×SU(2), where the SU(2) comes from the parallel NS5
branes and is weakly coupled.

If we put the theory on S5 we can use localization [4] to compute the free energy and
certain supersymmetric observables by reducing the theory to a matrix model. If we assume
that we are in the large N limit then these quantities can be evaluated by saddle point.
For this setup it should be possible to pass through the infinite coupling point to negative
coupling and examine the behavior. While one might expect the negative coupling to desta-

4



Figure 3: (p, q) web for N = 1 SU(N/2) gauge theory with a Chern-Simons term at level
k = N/2.

bilize the matrix model, the one-loop determinant more than compensates for the negative
coupling and renders the entire matrix model stable. We will see that at negative coupling
the localized path integral is dominated by a saddle point where the N eigenvalues split into
two groups where the mean position of the two groups is separated by −8π2

λ
. Within each

group, the eigenvalues take the distribution one would get for an SU(N/2) Chern-Simons
theory at level ±N/2. There is also a U(1) gauge theory with a positive weakly coupled
Yang-Mills term which is enhanced to SU(2) by massless instantons.

For odd N the result on S5 is somewhat subtle. At infinite coupling and at the origin
of the Coulomb branch the (p, q) web has the configuration shown in Figure 4 (a). Passing
through the fixed point to negative coupling a (−1, 2) brane joins the two sets of external
branes as shown in Figure 4 (b). One can then move onto the Coulomb branch with the
appearance of hidden faces [3], as shown in Figure 5 (a). Here one has two sets of separated
(N − 1)/2 D5 branes along with a half D5 brane at the tip of each triangle. As the faces get
larger the tips will eventually merge to form a D5 brane at the origin as shown in Figure 5
(b).

On the S5 one integrates the N − 1 eigenvalues over the Coulomb branch, thus it seems
that the relevant web is the one in Figure 5 (b). Here we will find that the saddle point at
negative coupling will be dominated by two sets of (N−1)/2 eigenvalues far apart from each
other, with one more eigenvalue at the origin, consistent with the picture in Figure 5 (b).
The two sets of eigenvalues approach the profiles of an SU(N−1

2
) gauge theory with levels

k = ±(N + 1)/2. The two gauge theories also have induced Yang-Mills actions with positive
coupling, whose inverse is equal to half of the length of the D5 branes pictured in Figure 5
(b). Hence their couplings go to zero as the ’t Hooft coupling of the original SU(N) gauge
theory approaches 0−.

We can also consider each SU(N/2)±N/2 Chern-Simons as a stand-alone theory. At infinite
Yang-Mills coupling each is superconformal. On the S5 we can find the eigenvalue density
of the corresponding matrix model numerically. While we have not succeeded in finding the
distribution analytically, we can show that the width of the distribution is exactly 1 in the
large N limit in units of the inverse sphere radius. We can also show that the distribution
has a tail in one direction that falls off exponentially with a rate that can also be computed
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(a) g2YM =∞ (b) g2YM < 0

Figure 4: (p, q) web for N = 1 SU(N) gauge theory with N odd.

analytically. The infinite tail suggests that only a positive Yang-Mills term can be turned
on to move away from the fixed point. Using the known width of the distribution we can
find the leading order correction to the free energy coming from the Yang-Mills term.

As in four dimensions [5], one might worry that the negative gauge coupling could lead
to an enhancement of the instanton contribution in the partition function. The instantons
are localized on the vertices of the toric base of the CP 2, which itself is the base of a circle
fibration for the S5 [6–8]. The contribution of the instantons at each vertex on the base are
divergent in the limit of a round sphere. However, by turning on small squashing parameters
we can show that the divergence cancels when adding up the contribution from all vertices.
After canceling the divergences one can turn off the squashing parameters and evaluate the
resulting one-instanton contribution numerically. We can then show that this expression
remains exponentially suppressed in N when the coupling is negative, demonstrating that
the instanton contribution to the partition function can be safely ignored.

We can also consider USp(2N) gauge theories. If the theory has a massless hypermultiplet
in the antisymmetric representation as well as Nf < 8 massless hypermultiplets in the
fundamental representation, then it has a superconformal fixed point at infinite Yang-Mills
coupling that is dual to a weakly coupled supergravity theory on AdS6 [9–11]. Here we can
also consider turning on a negative Yang-Mills coupling, where one finds that the eigenvalue
distribution splits into a peak and its reflection. The behavior is similar to the pure SU(N)
case with N odd. We then investigate the behavior of the USp(2N) theory near the fixed
point. Unlike the pure SU(N) case, this theory seems to exhibit a phase transition as
one passes from positive to negative inverse coupling. We show that this apparent phase
transition is fifth order. However this result contradicts the self-duality of the USp(2N) that
follows from the SU(2) global symmetry of the corresponding fixed point. We propose that a
full accounting of instantons will resolve this contradiction, but leave its proof for the future.

The rest of the paper is organized as follows. In section 2 we review the matrix model
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(a) g2YM < 0 along the Coulomb branch (b) g2YM < 0 with D5 brane at the origin

Figure 5: (p, q) webs for N = 1 SU(N) gauge theory with N odd at two points along the
Coulomb branch from Figure 4. (a) shows the hidden faces which merge to form a D5 brane
in (b).

derived from an SU(N) gauge theory with an adjoint hypermultiplet of mass m. By taking
the mass to infinity we reduce the theory to a pure SU(N) theory with an effective ’t Hooft
coupling that can be tuned to be negative. In section 3 we study this theory at negative
coupling for even and odd N and compare the behavior to our expectations from the (p, q)
webs. We also show how one generates the Chern-Simons levels of the resulting theories by
integrating out the massive fermions. In section 4 we consider an SU(N/2) gauge theory at
Chern-Simons level N/2 on the S5. We find the eigenvalue density numerically and show
that it has an exponential tail that extends to infinity. We find the width of the distribution
analytically and use this to find the correction to the free energy by turning on a Yang-
Mills term. In section 5 we compute the one-instanton contribution to the partition function
numerically and show that it is exponentially suppressed in N . In section 6 we consider the
USp(2N) theories. We first study these theories at negative coupling. We then consider its
behavior near the fixed point and show how the matrix model leads to a fifth order phase
transition. In section 7 we present our conclusions. The appendices contain extra technical
details.

2 The partition function on S5 with an adjoint hyper-

multiplet

In this section we consider the matrix model for SU(N) N = 1 super Yang-Mills (SYM)
with an adjoint hypermultiplet with mass m on S5. The hypermultiplet mass will be taken
to infinity such that it reduces to pure N = 1 SYM with a negative effective coupling.

The localized partition function for an SU(N) gauge theory with eight supersymmetries

7



on Sd has the general form [12] 1

Z =

∫
Cartan

[dσ] e
− 4π

d+1
2 rd−4

g2
YM

Γ( d−3
2 )

Trσ2

Z1−loop(σ) + Instantons , (2.1)

where σ is an N × N Hermitian matrix 2. Z1−loop(σ) is the contribution of the Gaussian
fluctuations about the localized fixed point. Its contribution from the vector multiplet,
combined with the Vandermonde determinant is given by

Zvect
1−loop(σ)

∏
β>0

〈β, σ〉2 =
∏
β>0

∞∏
n=0

(
(n2 + 〈β, σ〉2)((n+ d− 2)2 + 〈β, σ〉2)

) Γ(n+d−2)
Γ(n+1)Γ(d−2) . (2.2)

where γ are the positive roots for the gauge group. Likewise, the contribution from the
adjoint hypermultiplet is

Zhyper
1−loop(σ) =∏

β

∞∏
n=0

[((
n+

d− 2

2

)2

+(〈β, σ〉+ µ)2

)]− Γ(n+d−2)
Γ(n+1)Γ(d−2)

(2.3)

where µ ≡ mr is the dimensionless mass parameter.
In the large-N limit we can ignore the contribution of instantons (to be shown explicitly

in section 5) and the partition function is dominated by a saddle point. If we set d = 5 we
find the saddle point equations [15]

8π3N

λ
σi = π

∑
j 6=i

[ (
2− (σi − σj)2

)
coth(π(σi − σj))

+
1

2

(
1

4
+ (σi − σj − µ)2

)
tanh(π(σi − σj − µ))

+
1

2

(
1

4
+ (σi − σj + µ)2

)
tanh(π(σi − σj + µ))

]
. (2.4)

where λ ≡ g2YMN/r is the dimensionless ’t Hooft coupling.
Let us now assume that the mass parameter µ is very large, such that µ � 1 and

µ � |σi − σj| for all i and j. In this case the hypermultiplet mass acts as a regulator and
the saddle point equations reduces to

8π3N

λeff
σi = π

∑
j 6=i

(
2− (σi − σj)2

)
coth(π(σi − σj)) , (2.5)

1For particular expressions in 5d case see [13].
2We use the conventions for g2YM in [14]
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where λeff is the effective ’t Hooft coupling which is defined by

4π2

λeff
≡
(

4π2

λ
− µ

)
. (2.6)

Equation (2.5) is the saddle point equation for a vector multiplet and in deriving it we used
that

∑
i σi = 0 since the gauge group is SU(N) and not U(N).

For small separations where |σij| � 1, the kernel in (2.5) behaves as

π
(
2− (σi − σj)2

)
coth(π(σi − σj)) ≈

2

σij
. (2.7)

This is relevant at weak effective coupling when λ−1eff � 1. However, for large separations
the kernel behaves as

π
(
2− (σi − σj)2

)
coth(π(σi − σj)) ≈ −π(σi − σj)2sign(σi − σj) , (2.8)

which is half the 7d large separation kernel with 16 supersymmetries [14]. Hence we expect
the eigenvalues to behave similarly to that case. Indeed one finds with the approximation in
(2.8) that the eigenvalue density, defined as

ρ(σ) ≡ N−1
N∑
i=1

δ(σ − σi) , (2.9)

reduces to [16,14]

ρ(σ) =
1

2
(δ(σ + b) + δ(σ − b)) , (2.10)

where b = − 4π2

λeff
. Hence the approximation in (2.8) is valid if λ−1eff � −1. In addition, we

can borrow from the 7d result in [14] to show that here the free energy in this limit is

F = N2

(
4π2

λeff

∫ b

−b
dσρ(σ)σ2 +

π

6

∫ b

−b
dσρ(σ)

∫ b

−b
dσ′ρ(σ′)|σ − σ′|3

)
=

4π3

3λeff
N2

(
− 4π2

λeff

)2

=
64

3

π7

λ3eff
N2 (2.11)

We may also consider BPS Wilson loops that wrap the S5 equator. These have the
expectation value

〈W 〉 = Tr
(
Pei

∮
ds·φ0

)
≈
∫ b

−b
dσρ(σ)e2πσ . (2.12)

Using the eigenvalue density in (2.10) we find

〈W 〉 = cosh

(
8π3

λeff

)
≈ 1

2
exp

(
− 8π3

λeff

)
. (2.13)
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3 SU(N) gauge theory with negative coupling

In this section we consider more closely the behavior of the eigenvalue density when λ−1eff �
−1 and how it meshes with our understanding from the (p, q) webs. Note that we can
naturally approach this regime when flowing to the IR. To see this, let us make the radius
of the S5 explicit in (2.6), so that we have

4π2

λeff
=

r

N

(
4π2

g2YM
−mN

)
. (3.1)

The hypermultiplet mass m and the bare coupling g2YM may be considered fixed. We can
then flow to the UV by sending r → 0. In this case λ−1eff → 0, independent of the sign, and
we reach a nontrivial UV fixed point [1, 17].

However, if we send r → ∞ such that we flow to the IR, then the sign matters. If
λeff > 0 then the flow is to weakly coupled super Yang-Mills and nothing special happens.
On the other hand, if the hypermultiplet mass is tuned so that λeff < 0, then λeff → 0− as
r → ∞. From the matrix model equations of motion in (2.5), we saw previously that the
eigenvalue distribution splits into two peaks separated by approximately 2b = − 8π2

λeff
. In the

approximation used in (2.8) the peaks have zero width. However, taking into account the
subleading term in the kernel results in a nonzero width for each peak. We will show this
below and in section 4.

3.1 N even

To proceed let us assume that the eigenvalue distribution is symmetric about the origin and
to avoid an eigenvalue at σ = 0 we choose N even. Later we will consider N odd. We can
then divide the eigenvalues into two groups with

σi = σ0 + δσi 1 ≤ i ≤ N/2

σi+N/2 = −σ0 + δσ̃i (3.2)

where we assume that

N/2∑
i

δσi =

N/2∑
i

δσ̃i = 0 . (3.3)

Letting λ−1eff � −1 the equations for 1 ≤ i ≤ N/2 become

8π3N

λeff
(σ0 + δσi) = π

N/2∑
j 6=i

(
2− (δσi − δσj)2

)
coth(π(δσi − δσj)) (3.4)

+πN − πN

2

(
4σ2

0 + 4σ0δσi + (δσi)
2
)
− π

N/2∑
j=1

(δσ̃j)
2 + O(e−2σ0) .
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If we sum (3.4) over i, then using the antisymmetry of the kernel we find

8π3N

λeff
σ0 = πN − 2πNσ2

0 − π
N/2∑
j=1

(δσj)
2 − π

N/2∑
j=1

(δσ̃j)
2 + O(e−2σ0) . (3.5)

Substituting this expression back into (3.4) and dropping the exponentially suppressed terms
we arrive at the equation

πN

2

(
δσ2

i −
λeff
2π2

δ0δσi − δσ2

)
= π

N/2∑
j 6=i

(
2− (δσi−δσj)2

)
coth(π(δσi−δσj)) , (3.6)

where we have defined

δσ2 ≡ 2

N

N/2∑
i=1

δσ2
i , δσ̃2 ≡ 2

N

N/2∑
i=1

δσ̃2
i , (3.7)

and

δ0 ≡ −
8π2

λeff

(
σ0 +

4π2

λeff

)
, (3.8)

which from (3.5) leads to

δ0 ≈ 1− 1

2
δσ2 − 1

2
δσ̃2 . (3.9)

In the limit λeff → 0− we can drop the linear term in δσi. However, later in section 4 and
appendix A we will show that δ0 is suppressed by an inverse power of N so this term can be
dropped even for finite λeff in the large N limit.

Hence, (3.6) reduces to

πN

2
(δσ2

i + χ) = π

N/2∑
j 6=i

(
2− (δσi−δσj)2

)
coth(π(δσi−δσj)) , (3.10)

where χ = −δσ2. The lefthand side of this equation can come from a free energy with the
form

F = π
N

2

N/2∑
i=1

(
1

3
Tr(δσi)

3 + χTr(δσi)

)
, (3.11)

where δσi are the eigenvalues for an adjoint scalar in the vector multiplet of an SU(N/2)
gauge theory. The first term is the contribution of a 5-dimensional Chern-Simons term at
level k = N/2, while the second is a Lagrange multiplier term which enforces the tracelessness
condition. A similar equation can be derived for δσ̃i except the lefthand side of (3.10) has
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the opposite sign. Hence this would correspond to an SU(N/2) gauge theory with a Chern-
Simons term at level k = −N/2.

This analysis shows that negative coupling forces the eigenvalues into two groups, essen-
tially moving the theory far out on the Coulomb branch, such that the gauge group breaks
SU(N)→ SU(N/2)+N/2×SU(N/2)−N/2×U(1). The scalar field in the U(1) vector multiplet
is φ = 2σ0/R and we can see from (3.4) that there is a corresponding prepotential

F =
1

2g2eff
φ2 +

πN

24π3
|φ|3 (3.12)

At the minimum where F ′ = 0, we have that φ = − 8π2

g2
effN

and the U(1) coupling is given by

1

g2
= F ′′ = − 1

g2eff
, (3.13)

Hence the effective U(1) coupling is actually weakly positive in this regime.
As we take r → ∞ the effective U(1) coupling is g2/r and flows to zero. The W-

bosons charged under the U(1) have their masses driven to ∞. However, we also expect the
instantons to be massless and charged under the U(1). Hence, the U(1) is lifted to SU(2)
and the theory flows to an effective theory in the IR with SU(N/2)+N/2×SU(N/2)−N/2 along
with an SU(2) vector multiplet. This corresponds to the (p, q) web shown in Figure 2 (b).
We will comment further on the enhancement to SU(2) in section 5 where we discuss the
contribution of instantons.

Note added for version 2: Similar results were recently obtained in the studies of phase
diagrams for 5d supersymmetric gauge theories using brane web constructions [18]. In partic-
ular, in one of the corners of the phase diagram for the rank N E1 theory the authors observed
a transition from the SU (N + 6)6 theory to the SU

(
N+7
2

)
N+7

2

× SU
(
N−5
2

)
−N−5

2

× SU(2) the-

ory for the case of odd N . This observation is a direct generalization of our result to the case
of non-zero CS level. Each of the two SU(M)M theories possess an SU(2) global symmetry
at the UV fixed point. The diagonal part of these two SU(2) symmetries is then gauged
and results in one SU(2) gauge theory and one global SU(2) symmetry. In our case the
interpretation of the SU(2) factor is the same.

3.2 N odd

Let us now consider the case whereN is odd. When the coupling is positive the distribution of
the eigenvalues is symmetric about the origin, with one eigenvalue at zero, namely σN+1

2
= 0.

As the coupling crosses over to the negative side, the eigenvalue at zero stays there, while
the others separate into two groups of N−1

2
on either side of the origin. We let

σi = σ0 + δσi 1 ≤ i ≤ (N − 1)/2

σi+N+1/2 = σ̃0 + δσ̃i (3.14)
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while assuming

N−1
2∑
i=1

δσi =

N−1
2∑
i=1

δσ̃i = 0 . (3.15)

Since we are considering an SU(N) gauge group we should impose σ̃0 = −σ0. Equations
(3.4) and (3.5) are then modified to

8π3N

λeff
(σ0 + δσi) = π

N−1
2∑
j 6=i

(
2− (δσi − δσj)2

)
coth(π(δσi − δσj))

+π(N − 1)− π(N − 1)

2

(
4σ2

0 + 4σ0δσi + (δσi)
2
)
− π

N−1
2∑
j=1

(δσ̃j)
2

+2π − π
(
σ2
0 + 2σ0δσi + (δσi)

2
)

+ O(e−2σ0) , (3.16)

8π3N

λeff
σ0 = π(N + 1)− π(2N − 1)σ2

0 − π
N + 1

2
δσ2 − πN − 1

2
δσ̃2 + O(e−2σ0) ,

(3.17)

where δσ2 and δσ̃2 are defined analogously to (3.7). Solving for σ0 after dropping the
exponentially suppressed terms we find

σ0 = − 4π2

λeff
+
f(λeff)

N
, (3.18)

where

f(λeff) =
2N

2N − 1

2π2(N − 1)

λeff
+N

√(
2π2

λeff

)2

+
1

4

(
2− δσ2 − δσ̃2 +

2

N

) . (3.19)

Then the analog of (3.6), up to exponentially suppressed terms, is

π(N + 1)

2

(
δσ2

i − δσ2
)

+ 2πf(λeff)δσi = π

N−1
2∑
j 6=i

(
2− (δσi−δσj)2

)
coth(π(δσi−δσj)) .

(3.20)

These are the equations of motion for an SU(N−1
2

) gauge theory at level k = N+1
2

. Unlike the
case with even N we have also generated a Yang-Mills term with coupling g2 = 4π2/f(λeff).
A similar analysis for the δσ̃i equations leads to an SU(N−1

2
) gauge theory at level k = −N−1

2

and with the same Yang-Mills coupling. There are also two U(1) gauge theories with heavy
W particles. Hence, this corresponds to the (p, q) web in Figure 5 (b).
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We should check the stability of this solution. To this end, consider moving σN+1
2

away

from the origin such that we continue to satisfy the SU(N) condition N−1
2

(σ0+σ̃0)+σN+1
2

= 0.

Hence, the equation of motion for σN+1
2

is

8π3N

λeff
σN+1

2
= −πN − 1

2
(σ0 − σ̃0)(2σN+1

2
− (σ0 + σ̃0)) + O(e−2σ0)

= −πN(σ0 − σ̃0)σN+1
2

+ O(e−2σ0) , (3.21)

where we have assumed that δσ2 = δσ̃2. After dropping the exponentially suppressed terms
and setting σ0 − σ̃0 = 2σ0 to lowest order in σN+1

2
, we get an equation that comes from the

potential

V
(
σN+1

2

)
= πN

(
4π2

λeff
+ σ0

)
σ2
N+1

2

= πf(λeff)σ
2
N+1

2

. (3.22)

Inspecting (3.19) we see that f(λeff) > 0 and the solution is stable, as long as δσ2 ≤ 1.
To show that this condition is true, let us return to the equations for δσi in (3.20) as

λeff → 0−. In this limit we can approximate f(λeff) by

f(λeff) ≈ −
2π2

λeff
− 1− δσ2

4

Nλeff
2π2

(3.23)

We can then define a new ’t Hooft coupling λd for the SU(N−1
2

) gauge group, such that

λd ≡ g2
N − 1

2
≈ −Nλeff + O(N−1) . (3.24)

As λd → 0+ the Yang-Mills term dominates over the Chern-Simons term and the δσi ap-
proach the profile of a Gaussian matrix model, which has a width squared δσ2 = λd

8π3 , which
satisfies the above stability condition.

Note that in the λd → 0+ limit the inverse Yang-Mills coupling f(λeff) for the SU(N−1
2

)
gauge theories equals half of σ0. Consulting Figure 5 (b), the lengths of the shorter sides of
the right triangles equal σ0. Hence, the inverse coupling is half the length of the D5 branes.

3.3 The Chern-Simons levels directly from field theory

In this subsection we derive the Chern-Simons levels directly in a field theory calculation. In
particular, the shifts of the Chern-Simons levels described above come from the decoupling
of massive fermions. For definiteness we consider the case of even N in this section. All
derivations presented below can be easily modified for the case of odd N .

Let us write down the part of the Lagrangian quadratic in the fermions for a vector
multiplet in a 5d Euclidian theory [19,20]:

Lvec ∼
1

g2YM
Tr
(
iλ†ΓµDµλ− λ† [σ, λ]

)
, (3.25)
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which gives the equation of motion

iΓµDµλ− [σ, λ] = 0 . (3.26)

We next move onto the Coulomb branch by giving the scalar σ the expectation value

〈σ〉 =

[
σ0 IN/2×N/2 0

0 −σ0 IN/2×N/2

]
, (3.27)

and also write the adjoint fermion λ in block form as

λ =

[
λ11 λ12

λ21 λ22

]
. (3.28)

The blocks λ11 and λ22 correspond to the adjoint fermions of the SU(N/2) subgroups while
λ12 and λ21 are in the bifundamental representations

(
N/2, N̄/2

)
and

(
N̄/2, N/2

)
respec-

tively. Equation (3.26) then splits into the Dirac equations

iΓµDµλ
11 = 0 , iΓµDµλ

22 = 0 ,

(iΓµDµ − 2σ0)λ
12 = 0 , (iΓµDµ + 2σ0)λ

21 = 0 . (3.29)

Hence, the λ12 fermions acquire a negative mass −2σ0, the λ21 fermions get a positive mass
+2σ0, while λ11 and λ22 stay massless 3. As was shown in [21], integrating out the massive
fermions leads to a shift of the Chern-Simons level

δk = −sign(m)
C3(R)

2
. (3.30)

Applying this to our case and using that C3(R) is +1 (−1) for a fundamental (antifunda-
mental) representation, we get the following level shifts from the decoupled fermions:

λ12 : δk121 =
1

2

N

2
, δk122 =

1

2

(
−N

2

)
,

λ21 : δk211 = −1

2

(
−N

2

)
, δk212 = −1

2

N

2
, (3.31)

which combine to give

δk1 =
N

2
, δk2 = −N

2
, (3.32)

consistent with the result in section 3.1.
Note that if the bifundamental fermions had come from a hypermultiplet the shift in the

levels would have been the opposite. This is clear from the fermion quadratic term for an
adjoint hypermultiplet,

Lhyp ∼ −2iψ†ΓµDµψ − 2ψ†[σ, ψ] , (3.33)

where one can see that the relative sign between the kinetic term and the Yukawa term is
the opposite of (3.26).

3Since we work with a Euclidian metric the sign in front of the mass term is opposite to the one used
in [21].
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4 SU(N/2)N/2 Chern-Simons

In this section we consider the SU(N/2)N/2 gauge theory with no Yang-Mills term, whose
(p, q) web is shown in Figure 3 and its eigenvalue equations are given in (3.10). We also
consider what happens as one turns on the Yang-Mills term.

The Chern-Simons level k has to satisfy −N/2 ≤ k ≤ N/2 in order to have a nontrivial
fixed point, hence the theory we consider is the maximum in this range. In the large N
limit, sitting at the maximum level pushes the support for the eigenvalue density out to
−∞. Hence the eigenvalue equations (3.10) reduce to an integral equation with the form

σ2 + χ =

∫ b

−∞
− dσ′ρ(σ′)(2− (σ − σ′)2) coth (π(σ − σ′)) , (4.1)

where the density is normalized to
∫ b
−∞ dσρ(σ) = 1 and the integration endpoint b is positive

of order 1. Since the integration region extends all the way to −∞, and if we assume that
the eigenvalue density falls off exponentially as σ′ → −∞, then in the limit σ → −∞, (4.1)
simplifies to

σ2 + χ =

∫ b

−∞
dσ′ρ(σ′)(−2 + (σ − σ′)2) = σ2 − 2 +

∫ b

−∞
dσ′ρ(σ′)(σ′)2 , (4.2)

where we used (3.3). Hence, the Lagrange multiplier is

χ = −2 +

∫ b

−∞
dσρ(σ)σ2 . (4.3)

If we integrate both sides of (4.1) we also have∫ b

−∞
dσρ(σ)σ2 + χ =

∫ b

−∞
dσρ(σ)

∫ b

−∞
− dσ′ρ(σ′)(2− (σ − σ′)2) coth (π(σ − σ′)) = 0 , (4.4)

since the integrand is antisymmetric under the exchange of σ and σ′. Combining this with
(4.3) we find ∫ b

−∞
dσρ(σ)σ2 = 1 , χ = −1 . (4.5)

The first result tells us that the width of the distribution is 1 in the large-N limit. Since the
distribution of the two sets of eigenvalues is symmetric, meaning that

2

N

N/2∑
j=1

(δσj)
2 =

2

N

N/2∑
j=1

(δσ̃j)
2 ≈

∫ b

−∞
dσρ(σ)σ2 = 1 , (4.6)

it follows from (3.5), (3.8), and (4.5) that it is consistent to set δ0 = 0 in (3.6). In appendix
A we show that for finite N the width squared for the solution to (3.10) is precisely

2

N

N/2∑
j=1

(δσj)
2 = 1− 2

N
, (4.7)
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Figure 6: Eigenvalue density for SU(N/2)N/2 Chern-Simons theory with N/2 = 500. The

orange dots are the numerical result while the blue curve is a fit to the function a
√
b− σ ecσ

with a best fit at a = 0.3566, b = 1.182 and c = 1.308.

hence from (3.5) we see that δ0 ≈ 1/N and can be ignored in the large-N limit.
While we expect ρ(σ) to have a square root branch cut and an exponential fall off, it does

not seem possible to solve for ρ(σ) analytically in (3.10). However, we can find the solution
numerically. Figure 6 shows the distribution of eigenvalues with N/2 = 500. We also show a
best fit for the simplest function meeting the stated criteria, f(σ) = a

√
b− σ ecσ. The best

fit parameters are given in the figure.
The exponential fall off on the tail of the distribution can be justified as follows. On the

tail the eigenvalues are generically widely separated from each other, in which case we can
make the approximation cosh (π(σ − σ′)) ≈ sign(σ − σ′). If we make this replacement in
(4.1) then the integral equation takes the form

σ2 + χ =

∫ b

−∞
− dσ′ρ(σ′)(2− (σ − σ′)2)sign(σ − σ′) . (4.8)

Taking three derivatives on both sides of the equation then gives

0 = 4ρ(σ)− 4ρ′′(σ) , σ < b . (4.9)

The only allowable solution is ρ(σ) = Aeσ−b. The coefficient A and the endpoint b are

determined by normalizing the density and setting
∫ b
−∞ dσρ(σ)σ = 0, which gives A =

b = 1. Figure 7 shows the numerical results on the tail compared with this exponential
approximation, clearly showing a good fit as one moves out along the tail.

It is interesting to turn on the Yang-Mills coupling in this theory. The addition of the
Yang-Mills action adds the term 16π2r

g2
YMN

σ to the left hand side of (4.1). It also leads to

a finite integration region on the right hand side of this equation. Unlike the cases when
−N/2 < k < N/2, it is not possible to pass through to the negative coupling side when
k = ±N/2. This can be seen from the (p, q) web, but also from (4.2), since the right hand
side cannot generate a linear term in σ.

We can then find the dependence of the free energy on the Yang-Mills coupling, assuming
that it is large. At infinite coupling the free energy is F = C0N

2 where C0 is a constant of
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Figure 7: Eigenvalue density for SU(N/2)N/2, N/2 = 500, on the tail. The orange dots are
the numerical result while the green curve is the approximate density ρ(σ) = eσ−1. The blue
curve is the fit shown in Figure 6

order 1. If we then modify the coupling such that 4π3r
g2
YMN

� 1, then the new free energy is

approximately

F ≈ C0N
2 +

〈
4π3r

g2YM

N/2∑
i=1

σ2
i

〉

≈ C0N
2 +

4π3r

g2YM

N

2

∫ b

−∞
dσρ(σ)σ2 = C0N

2 +
2π3rN

g2YM
(4.10)

where we used (4.5) in the last step.

5 Instantons at large N in 5D

In this section we consider the effect of instantons on the large N approximation. While
such a study has been carried out in four dimensions, the same has previously not been done
in five. Here we will show that the instantons are exponentially suppressed in the large N
limit and so can be safely ignored.

As in the case of four dimensions with eight supersymmetries, we need to worry about
the contributions of instantons if the effective coupling is negative. Normally, instantons are
suppressed by a factor of e−1/g

2
, which in the large N limit with fixed ’t Hooft constant λ

can be ignored. However, if the effective coupling is negative, then the instantons could be
enhanced at large N . Such a scenario was considered in four dimensions, where it was shown
by a careful analysis that instantons are still suppressed in the large N limit [5].

In five dimensions the instantons are actually particles that traverse world lines. On S5

one expects the instantons to be localized on the Reeb orbits fibered over the CP 2 fixed
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points at (z1, z2, z3) = (1, 0, 0), (0, 1, 0) and (0, 0, 1). Their contribution to the partition
function is conjectured to be [7]

Zinst
R4×S1

(
iσ, iµ,

2π

ω2

, ω1 + ω2, ω3

)
Zinst

R4×S1

(
iσ, iµ,

2π

ω1

, ω3 + ω1, ω2

)
Zinst

R4×S1

(
iσ, iµ,

2π

ω3

, ω1 + ω3, ω2

)
(5.1)

where Zinst
R4×S1 (iσ, iµ, β, ε1, ε2) is the Nekrasov partition function for the N = 1∗ theory on

R4 × S1. The ωi are three squashing parameters on the sphere which we keep in order to
regulate the answer. On the round sphere ωi = 1. Here we only consider the one instanton
partition function, whose contribution from the first fixed point is given by

Z1
R4×S1

(
iσ, iµ,

2π

ω2

, ω1 + ω2, ω3

)

=
e
− 8π3r

g2
YM

ω2 sinh
(
π
ω2

(σji + µ̂+ iω3)
)

sinh
(
π
ω2

(σij + µ̂+ i(ω1 + ω2))
)

sin
(
πω1

ω2

)
sin
(
πω3

ω2

)
×

N∑
i

N∏
j 6=i

sinh
(
π
ω2

(σji + µ̂+ i∆)
)

sinh
(
π
ω2

(σij + µ̂)
)

sinh
(
π
ω2

(σji + i∆)
)

sinh
(
π
ω2
σij

) , (5.2)

where µ̂ = µ− i
2
(ω1 + ω2 + ω3) [22] and ∆ = ω1 + ω2 + ω3. If we assume that µ� |σij| then

we can approximate (5.2) as

Z1
R4×S1

(
iσ, iµ,

2π

ω2

, ω1 + ω2, ω3

)

≈ e
− 8π3r

g2
YM

ω2
+ 2πNµ

ω2

22N sin
(
πω1

ω2

)
sin
(
πω3

ω2

) N∑
i

N∏
j 6=i

1

sinh
(
π
ω2

(σji + i∆)
)

sinh
(
π
ω2
σij

)
=

e
− 8π3N
λeffω2

22N sin
(
πω1

ω2

)
sin
(
πω3

ω2

) N∑
i

N∏
j 6=i

1

sinh
(
π
ω2

(σji + i∆)
)

sinh
(
π
ω2
σij

) .
(5.3)

The leading factor is divergent as we approach the round sphere. However, if we combine
this contribution with those from the other two fixed points and take the limit ωi → 1 we
find that the divergence cancels and there is an overall contribution of order N2. Hence, the
full one instanton contribution has the form

Z1
S5 (iσ) ∼ N2 2−2Ne

− 8π3N
λeff

N∑
i

N∏
j 6=i

1

sinh2 (πσji)
. (5.4)
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If λeff < 0 then it would appear that the instanton contribution blows up in the large N
limit. However, if we assume that the eigenvalues have the distribution in (3.2) and (3.8),
and further assume that δσ̃i = −δσi then (5.4) becomes

Z1
S5 (iσ) ∼ N2 2−Ne

− 8π3N
λeff

N/2∑
i

N/2∏
j 6=i

e−2π(δσi+2σ0)

sinh2 (πδσji)

= N2 2−N
N/2∑
i

N/2∏
j 6=i

e−2πδσi

sinh2 (πδσji)
. (5.5)

While we are unaware of a way to find the product in (5.5) analytically, we can do it
numerically in the limit where λeff → 0−. If we choose the index i such that the product is
a maximum, we find that

2−N
N/2∏
j 6=i

e−2πδσi

sinh2 (πδσji)
∼ N−2 exp(−2.03N) , (5.6)

Hence, there is an exponential suppression in N and the instantons can be ignored. A further
explanation of the exponential behavior as well as the prefactor is given in appendix B.

Note that in the second line of (5.5) the λeff dependence has canceled out. This is a
manifestation of the fact that the instanton particles are massless when λeff < 0 and the U(1)
gauge group is enhanced to SU(2). The instanton suppression is instead due to the finite
spread of the eigenvalues as seen in Figure 6. In other words, it is due to the suppression
coming from the individual SU(N/2)±N/2 gauge theories.

6 USp(2N) gauge theories

In this section we investigate five-dimensional USp(2N) supersymmetric gauge theories.
These theories are notable because with an appropriate set of massless hypermultiplets they
can have a superconformal fixed point that is dual to an AdS6 background [10, 9]. An in-
teresting question is what happens when passing through the fixed point as one varies the
inverse Yang-Mills coupling.

We start with a gauge theory that contains the USp(2N) vector multiplet, one antisym-
metric hypermultiplet with mass mA, and eight fundamental hypermultiplets with masses
mk, k = 1 . . . 8. The matrix integral for the partition function is derived using (2.1), (2.2)
and (2.3). In the large N limit this integral is dominated by a saddle point which satisfies
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the equations

16π3N

λ
σi = π

∑
j 6=i

[(
2− (σi ± σj)2

)
coth(π(σi ± σj))

]
+ 2π

(
2−4σ2

i

)
coth(2πσi)

+
π

2

∑
j 6=i

[(
1

4
+(σi ± σj +mA)2

)
tanh(π(σi ± σj +mA))

+

(
1

4
+(σi ± σj −mA)2

)
tanh(π(σi ± σj −mA))

]
+
π

2

8∑
k=1

((
1

4
+ (σi +mk)

2

)
tanh(π(σi +mk)) +

(
1

4
+ (σi −mk)

2

)
tanh(π(σi −mk))

)
.

(6.1)

Here σi, i = 1, . . . , N , are half of the eigenvalues of the matrix while the other half are at
−σi. Without loss of generality we can assume that σi > 0. Also the ± signs mean that we
sum each term with both a “ + ” and a “ − ”. The ’t Hooft coupling λ is restricted to be
positive.

If we set all hypermultiplet masses to zero and assume that λ� 1, then (6.1) reduces to

16π2N

λ
σi =

∑
j 6=i

[
9

4
sign(σi − σj)

]
+

9

4
(N − 1) + 6 , (6.2)

whose solution is

σj =
3λ

32π2N
(3 j + 1) . (6.3)

This is very similar to the solution for an SU(N) gauge theory with a massless adjoint
hypermultiplet at strong coupling [20,23,15] and leads to a free energy that scales as −λN2.

6.1 Negative λeff with decoupled fundamental hypermultiplets

Now let us decouple one or more of the fundamental hypermultiplets by taking their masses
to be large. At the same time let us set all other masses to zero. In this case we find an
effective coupling that takes the form

1

λeff
=

1

λ
− 1

8π2

1

N

8∑
i=Nf+1

mi , (6.4)

where Nf is the number of fundamental massless hypermultiplets. Naively, decoupling a
fundamental hypermultiplet has no effect on the effective coupling because of the 1/N fac-
tor. However, we can let the mass of one or more of the fundamentals scale with N , such
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that we push λeff into negative territory. We then end up with a theory with a massless an-
tisymmetric hypermultiplet, Nf < 8 massless fundamental hypermultiplets and an effective
coupling which can be either positive or negative

If we let λeff < 0, then the central potential repels the eigenvalues away from the origin
and, as in the SU(N) case, we expect that the eigenvalues will group around points far
away from the origin. Using the large separation limit and assuming that there are Nf < 8
remaining massless fundamentals, (6.1) reduces to

16π2N

λeff
σi =

9

4

∑
j 6=i

sign (σi − σj) +
9

4
(N − 1) + 4 +

1

4
Nf − (8−Nf )σ

2
i . (6.5)

This has the solution σi = σ0, where

σ0 =
8π2N

|λeff|(8−Nf )
+

1

2

√(
16π2N

|λeff|(8−Nf )

)2

+
9N + 7 +Nf

8−Nf

≈ 16π2N

|λeff|(8−Nf )
. (6.6)

Similar to the SU(N) case, the solution to (6.1) actually has a finite size distribution of
eigenvalues around the peak at σ0. If we define

σi = σ0 + δσi ,
∑
i

δσi = 0 , (6.7)

then the saddle point equation (6.1) becomes

π(8−Nf )δσ
2
i +

(
16π3N

λeff
+ 2πσ0(8−Nf )

)
δσi +

16π3N

λeff
σ0 + πσ2

0(8−Nf ) =

π
∑
i 6=j

[(
2− δσ2

ij

)
coth (πδσij) +

(
1

4
+ δσ2

ij

)
tanh (πδσij)

]
, (6.8)

where δσij ≡ δσi − δσj. Summing equations (6.8) we can find

σ0 =
16π2N

|λeff|(8−Nf )
+ δ0
|λeff|
8π2

, δ0 =
Nf − 8

2N
δσ2 . (6.9)

Taking the large N limit we arrive at the following singular integral equation

16π2

|λeff|
δσ +

(8−Nf )

N
δσ2 + 2δ0 =

∫
d(δσ′)ρ(δσ′)

[(
2− (δσ − δσ′)2

)
coth(π(δσ − δσ′))+(

1

4
+ (δσ − δσ′)2

)
tanh(π(δσ − δσ′))

]
.

(6.10)

These kind of equations have already been analyzed in the context of five-dimensional YM-CS
theory in [24].
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If we consider weak negative coupling |λeff| � 1, then (6.10) describes an SU(N) theory
with a small positive ’t Hooft coupling |λeff| and a Chern-Simons level at (8 − Nf ). In
this approximation the righthand side of the saddle point equation is dominated by the
Yang-Mills term, creating a deep central potential for the eigenvalues. This leads to a small
support for the eigenvalues, such that |δσ′− δσ| � 1. Hence, we can approximate the saddle
point equation by

16π3

|λeff|
δσ +

π(8−Nf )

N
δσ2 + 2πδ0 = 2

∫
d(δσ′)

ρ(δσ′)

δσ − δσ′
. (6.11)

This equation is solved by the eigenvalue density

ρ(δσ) =
a

π
(δσ + κ+ b)

√
(ab)−1 − (δσ + κ− b)2 , (6.12)

where we have introduced the parameters

a =
π(8−Nf )

2N
, κ =

8π2N

|λeff|(8−Nf )
, µ = − 2N

8−Nf

δ0 , (6.13)

and the constant b satisfies

b(κ2 + µ− b2) =
1

2a
. (6.14)

Now imposing the SU(N) condition
∫
d(δσ)δσρ(δσ) = 0 we obtain

µ = (κ− 3b)(b− κ) , b2(κ− b) =
1

8a
. (6.15)

It can be checked that with this choice of µ the relation (6.9) for δ0 is automatically satisfied.
Instead of solving for b exactly we can use that a � 1 and κ � 1. Then if we want the
distribution (6.12) to have small support we should assume that b ≈ κ, which leads to

b ≈ κ− 1

8aκ2
, µ ≈ 1

4aκ
. (6.16)

Finally, substituting this solution back into the eigenvalue density (6.12) we find

ρ(δσ) ≈ a

π

(
δσ + 2κ− 1

8aκ2

)√
(aκ)−1 −

(
δσ +

1

8aκ2

)2

≈ 8π2

|λeff|

√
|λeff|
4π3

− δσ2 . (6.17)

The last approximation is a semicircle distribution, as one would expect for a weak ’t Hooft
coupling when the right hand side of (6.11) is dominated by the Yang-Mills term and the
Chern-Simons term can be ignored.

In Figure 8 we show the analytic solution described above compared with the numerical
solution to (6.1) at negative coupling. As we see, both the approximate solution in (6.6)
and the refined solution in (6.17) work very well. It is crucial to keep the subleading terms
in (6.6) in order to match (6.17) with the numerical solution, as shown in the right plot in
Figure 8.
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Figure 8: Eigenvalue density ρ(δσ) for λeff = −1, N = 50 and Nf = 4. The dashed lines
represent the analytical solutions (6.6) and (6.17).

6.2 Negative λeff with a decoupled antisymmetric hypermultiplet

We can also give a large mass to the antisymmetric hypermultiplet. In this case the effective
coupling is given by

1

λeff
=

1

λ
− 1

8π2

2mA +
1

N

8∑
i=Nf+1

mi

 , (6.18)

and the saddle point equation for the matrix integral turns into

16π3N
λeff

σi = π
∑
j 6=i

(2− (σi ± σj)2) coth(π(σi ± σj)) + 2π (2− 4σ2
i ) coth(2πσi)

+πNf

(
1
4

+ σ2
i

)
tanh(πσi) . (6.19)

These equations are very close to the ones obtained by decoupling an adjoint hypermultiplet
in N = 1∗ SYM for an SU(N) gauge theory. As in that case we assume −λeff � 1 which
leads to two widely separated peaks in the eigenvalue distribution. Again we make the ansatz

σi = σ0 + δσi ,
N∑
i=1

δσi = 0 , (6.20)

in which case summing over i in (6.19) leads to the equation

16π2N

λeff
σ0 = 2N+2+

Nf

4
− 4

(
N + 1−Nf

4

)
σ2
0 −

(
2+

4−Nf

N

) N∑
j=1

(δσj)
2 + O(e−2σ0) ,

(6.21)

whose solution is

σ0 = − 4π2

λeff
+
fU(λeff)

N
, (6.22)
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Figure 9: Eigenvalue density ρ(δσ) for λeff = −.1 and N = 150.

where

fU(λeff) ≈
π2

λeff
(4−Nf ) +

λeff
8π2

N
(

1− δσ2
)
. (6.23)

Then the saddle point equation (6.19) reduces to

π(N + 4−Nf )
(
δσ2

i − δσ2
)

+ 4π

(
2π2

λeff
(Nf − 4) + fU(λeff)

)
δσi

= π
∑
j 6=i

(
2− δσ2

ij

)
coth(πδσij) . (6.24)

This is the equation for an SU(N) gauge theory with Chern-Simons level k = N + 4 −Nf .
If Nf < 4 then the Chern-Simons level is greater than N with a positive Yang-Mills term
which is more in line with the SU(2N + 1) case. In Figure 9 (a) we show numerical solutions
both for equations (6.19) (orange dots) and (6.24) (red dots). As we can see the solutions
coincide perfectly.

If Nf = 4 then the level is at N and the Yang-Mills term cancels. Hence this has the
same behavior as we found for the SU(2N) case. The eigenvalue distribution solving (6.19)
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is shown in Figure 9 (b). It shows a width equal to one and an exponential tail that can be
approximated by eδσ−1, as shown by the dashed blue line on the plot. Unfortunately, (6.24)
is difficult to solve even numerically due to instabilities in the numerics.

Finally, if Nf > 4 then the level is less than N and there is a small negative Yang-
Mills contribution which still gives a stable eigenvalue distribution, as long as Nf < 8.
Interestingly, in this case the particular form of the distribution depends on whether Nf is
odd or even. In the case of even Nf we get a picture similar to the SU(N)N theory, i.e.
an eigenvalue density with an exponential tail of the form eδσ−1. An example of such a
distribution is shown in Figure 9 (c). In the case of odd Nf there is no tail in the eigenvalue
density and the support is finite of order one. The corresponding numerical solution to (6.19)
is shown in Figure 9 (d). It is not clear to us what causes the difference between even and
odd Nf and we leave this for future work.

6.3 An apparent fifth order phase transition and its possible res-
olution.

Let us now consider the behavior of the USp(2N) gauge theory near the superconformal
fixed point at t ≡ 8π2

λeff
= 0. Previously we saw that that the pure SU(N) gauge theory passes

smoothly through the fixed point, while the SU(N/2)N/2 fixed point is a limiting value for
the Yang-Mills coupling. In this case we will find something in between.

We consider once again the saddle-point equation (6.1), but this time with |λeff| � 1.
At the fixed point the eigenvalues scale as N1/2 [9]. In our case we expect the same behavior
since we are only perturbing around the fixed point. Hence, the eigenvalues in general are
widely separated in the large N limit and we can simplify the saddle point equations (6.1)
to

(8−Nf )σ
2
i + 2N tσi =

9

4
(2i− 2) , (6.25)

where we have assumed all eigenvalues are positive and ordered. This is just an algebraic
equation for σi with the solution

σi = − N t

(8−Nf )
+

1

2

√(
2N t

(8−Nf )

)2

+
9(2i− 2)

(8−Nf )
. (6.26)

This in turn leads to the eigenvalue density

ρ(σ) =
4

9

8−Nf

N

(
|σ|+ 2N t

(8−Nf )

)
, (6.27)

which is valid for both positive and negative coupling, but the endpoints are qualitatively
different in the two cases. When t > 0 the density has support between the points

x+1 = 0 , x+2 = − N t

(8−Nf )
+

1

2

√(
2N t

(8−Nf )

)2

+
18N

8−Nf

, (6.28)
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Figure 10: Comparison of the analytical and numerical solutions in the vicinity of the fixed
point t = 0 for N = 100 and Nf = 4.

while for t < 0 the support is between

x−1 = − 2N t

(8−Nf )
, x−2 = − N t

(8−Nf )
+

1

2

√(
2N t

(8−Nf )

)2

+
18N

8−Nf

. (6.29)

In Figure 10 we show the numerical solutions to the saddle point equation (6.1) and compare
it with the analytical solutions (6.27), (6.28), (6.29) in the vicinity of the fixed point t = 0.
As we see there is an excellent match between the two and we can trust our approximations.

As is clear from Figure 10, when passing through the fixed point the eigenvalue support
splits into two parts. Usually this is attributed to a third order phase transition, which can
be investigated by analyzing the free energy while crossing the fixed point. In the present
case the free energy is approximated by

F = πN2t

∫
dσσ2ρ(σ) +

πN(8−Nf )

3

∫
dσσ3ρ(σ)−

9π

8
N2

∫
δσρ(σ)

∫
δσ′ρ(σ′) (|σ − σ′|+ |σ + σ′|) , (6.30)

where the integrals are evaluated between the endpoints of the support given in (6.28) and
(6.29) for positive and negative t respectively.

The calculation of these integrals is straightforward but results in large and not particu-
larly informative expressions. Instead we wish to know the order of the discontinuity in the
derivatives of the free energy with respect to t at t = 0. This task can be simplified by using
the relation between the first derivative of the free energy with the second moment of the
eigenvalue density, namely

〈σ2〉 =
1

πN2

∂

∂t
F =

∫
dσσ2ρ(σ) . (6.31)

After a straightforward computation one then finds that

F |t→0+ − F |t→0− =
16πN5

135
t5 + O(t9) . (6.32)
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Figure 11: (p, q) web for a USp(2N) gauge theory with a hypermultiplet in the antisymmetric
representation at positive and negative coupling.

Hence, this system seems to have a fifth order phase transition at the superconformal fixed
point.

But this result contradicts the expected self-duality for a USp(2N) gauge theory with an
antisymmetric hypermultiplet under the change of sign of the coupling, λ→ −λ. One way to
see the duality is to observe that in the UV this theory flows to the rank N E1 theory which
has an SU(2)g×SU(2)m global symmetry. The SU(2)m flips the sign of the mass term, which
in our case emerges even at the level of the saddle point equations (6.1). The SU(2)g is the
symmetry responsible for flipping the sign of the YM coupling g2YM → −g2YM . The existence
of this global symmetry at the fixed point should lead to the self-duality of the USp(2N)
theory. The (p, q) brane web construction for the theory [25], shown in Figure 11, makes the
self-duality immediately obvious. This brane web is a direct higher rank generalization of
the SU(2) brane web shown in Figure 1. As we can see the brane web is self-dual under the
exchange of p and q, reflecting the duality between negative and positive coupling.

The most likely resolution for the contradiction is through the inclusion of the instantons.
In section 5 we have analyzed the instanton contribution to the partition function for SU(N)
SYM and showed that it can be neglected in the large N limit. However, a similar analysis
in the case of USp(2N) is more complicated due to the hypermultiplet in the antisymmetric
representation. In the case of SU(2), instantons are crucial for the establishment of the
duality. We expect the same for USp(2N) with the antisymmetric hypermultiplet. In this
case the contribution of the instantons will wash out the fifth order phase transition and
turn it to a smooth crossover [26].
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7 Discussion and Outlook

In this paper we considered five-dimensional supersymmetric gauge theories in the large
N limit with negative gauge coupling. In particular we considered two important types of
theories, pure N = 1 SU(N) super Yang-Mills and a USp(2N) theory with an antisymmetric
and Nf < 8 fundamental hypermultiplets. Using supersymmetric localization we showed how
the eigenvalues of the resulting matrix model separate into blocks of order one as we cross
over to negative gauge coupling through the infinite coupling fixed point. This is consistent
with the SU(N) theory breaking to SU (N/2)+N/2×SU (N/2)−N/2×SU(2) for the case of N

even. For N odd we find the group breaking to SU
(
N−1
2

)
+N+1

2

×SU
(
N−1
2

)
−N+1

2

×U(1)2, where

we expect the U(1)2 to be enhanced to SU(2)2. A similar analysis for the USp(2N) theory
with the antisymmetric tensor shows that after passing through the infinite coupling fixed
point the gauge group breaks to the SU(N)8−Nf × SU(N)Nf−8 undergoing an apparent fifth
order phase transition which we conjecture to be smoothed out by instanton contributions
in order to restore the self-duality.

Although we have focused only on these two cases, the pattern we observed seems generic
for large N gauge theories. In the future it would be interesting to generalize this analysis
to other theories admitting infinite coupling fixed points. There are two classes of particular
interest. The first class is a family of quiver theories with massive type IIA AdS6 duals
proposed in [11]. The S5 partition functions of these theories were analyzed in [9]. The
second class consists of quiver theories with type IIB AdS6 duals [27]. The large N limit
of these theories was analyzed recently using localization in [28]. Since all of these quivers
admit a large N limit we can expect that our analysis can be applied to them. Because these
theories possess multiple gauge nodes one can expect some interesting peculiarities.

Recently, the complete prepotential of certain five-dimensional low rank gauge theories
was proposed which is valid in the entire region of parameter space [29]. It would be in-
teresting to extend the complete prepotential to arbitrarily high rank theories and compare
this with the localization results described in this paper.
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A Width of the eigenvalue distribution at finite N .

Consider the generalization of the eigenvalue equation in (3.10)

M(σ2
i + χ) =

M∑
j 6=i

(
2q − (σi−σj)2

)
coth(π(σi−σj)) , (A.1)

where we have replaced N/2 with M and we assume that
∑

i σi = 0. One can easily show
that χ = − 1

M

∑
i σ

2
i by summing over i and noticing that the right hand side is zero because

of the antisymmetry between σi and σj. We then wish to show that Mχ = −(M − 1)q. Let
us assume that this is true, in which case the left hand side of (A.1) becomes

M(σ2
i + χ) = −

∑
j 6=i

(2q − (σi−σj)2) , (A.2)

and (A.1) can then be rewritten as

0 =
M∑
j 6=i

(
2q − (σi−σj)2

)
(coth(π(σi−σj)) + 1) (A.3)

for all i. The i = M equation in (A.3) follows from the other M − 1 equations.
To prove the claim we then need to show that the i = M − 1 equation in (A.3) follows

from the first M − 2 equations. To this end we note that we can write

2q − (σM−1−σM)2 = −
M∑
i<j

(2q − (σi−σj)2) + (2q − (σM−1−σM)2) (A.4)

If we then use that

coth(π(σM−1 − σM)) =
coth(π(σi − σM−1) coth(π(σi − σM))− 1

coth(π(σi − σM−1)− coth(π(σi − σM))
(A.5)

for any i, then using the first M −2 equations, the right hand side of the i = M −1 equation
can be rewritten as

M−2∑
i<j

(2q − (σi − σj)2)

[
(coth(π(σi−σM−1))− 1)(coth(π(σi−σj)) + 1)

coth(π(σi−σM−1))−coth(π(σi−σM))

+
(coth(π(σj−σM−1))− 1)(coth(π(σj−σi)) + 1)

coth(π(σj−σM−1))−coth(π(σj−σM))
− coth(π(σM−1−σM))−1

]
.

(A.6)

The term inside the square brackets is zero for each i and j, hence proving that the width
squared of the eigenvalue distribution is given by

1

M

∑
i

σ2
i =

M − 1

M
q . (A.7)
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B Exponential behavior for instantons

We can derive the general behavior in (5.6) as follows. Suppose we start with a large value
of N , say N = 2M0 � 1, and call the product in (5.6) P (M0). Now double the value of
N and assume that the new points lie on top of the original ones and also halfway between
the originals. Let us also assume that i is at the maximum and we will also use half-integer
numbering for the j index. Then for a typical distribution we would replace sinh2(π(δji))
with

sinh(π(δσj−1/2 − δσi)) sinh2(π(δσji)) sinh(π(δσj+1/2 − δσi)) ≈

sinh4(π(δσji))

(
1− π2

16M2
0ρ

2(δσj) sinh2(π(δσji))

)
,

(B.1)

where we used that δσj − δσj−1/2 ≈ 1
4M0ρ(δσj)

. For |δσj − δσi| � 1 we can approximate

the term inside the parentheses in (B.1) as 1 − 1
4(i−j)2 and it rapidly converges toward 1 as

j moves away from i. The product of all such terms is then well approximated by 4/π2.
However, in our doubling we have not yet accounted for the term

sinh(π(δσi−1/2 − δσi)) sinh(π(δσi+1/2 − δσi))
(

sinh(π(δσ1 − δσi))
sinh(π(δσM0 − δσi))

)±1
≈ k

M2
0

(B.2)

where k is a positive constant and where the choice of sign depends on whether we place a
leftover point to the left or the right of the distribution. Putting this all together we find
that

P (2M0) = CM2
0P (M0)

2 , (B.3)

where C is a constant. Now we can do the process over again, where by following the same
logic we have

P (4M0) = C(2M0)
2P (2M0)

2 = 4C3M6
0P (M0)

4 . (B.4)

It is then straightforward to show that

P (2mM0) =
1

4CM2
0

(
4CM2

0P (M0)
)2m

2−2m . (B.5)

If we now let N = 2 · 2mM0 we can express the product as

P (N/2) =
1

CN2

[(
4CM2

0P (M0)
) 1

2M0

]N
, (B.6)

showing the general form in (5.6). If the term inside the square brackets is less than 1 then
there is exponential suppression.
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