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Abstract: We study superconformal indices of 4d compactifications of the 6d minimal

(DN+3, DN+3) conformal matter theories on a punctured Riemann surface. Introduction

of supersymmetric surface defect in these theories is done at the level of the index by the

action of the finite difference operators on the corresponding indices. There exist at least

three different types of such operators according to three types of punctures with AN , CN

and (A1)
N global symmetries. We mainly concentrate on C2 case and derive explicit expres-

sion for an infinite tower of difference operators generalizing the van Diejen model. We check

various properties of these operators originating from the geometry of compactifications. We

also provide an expression for the kernel function of both our C2 operator and previously de-

rived A2 generalization of van Diejen model. Finally we also consider compactifications with

AN -type punctures and derive the full tower of commuting difference operators corresponding

to this root system generalizing the result of our previous paper.
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1 Introduction

Intricate connection between supersymmetric gauge theories and integrable systems plays an

important role in modern theoretical physics and mathematics. From physics point of view

whenever some sector of the gauge theory is related to an integrable system, observables in

this sector can be computed using rich variety of integrability techniques. Canonical example

of this situation is the integrability of N = 4 Super Yang-Mills (SYM) theory [1, 2]. In

particular it connects calculation of the planar scaling dimensions of N = 4 SYM to the

integrable system of spin chains and allows to compute these scaling dimensions at arbitrary

coupling. On the other hand exploration of such connections can also shed light on some

questions about integrable systems and even lead to construction of new classes of such

systems making this kind of studies interesting from mathematics point of view.

In our work we are exploring a particular class of connections between six dimensional

(1, 0) superconformal field theories and elliptic quantum mechanics Hamiltonians in the spirit

of Bethe/gauge correspondence of Nekrasov and Shatashvili [3–6]. In particular we consider

four-dimensional theories with four supercharges obtained by compactification of a 6d SCFT

on a punctured Riemann surface. In order for an integrable model to emerge in this setting

we have to introduce surface defects into our 4d theory and study its superconformal index.
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This construction was first established in the context of compactifications of 6d (2, 0) of

ADE type [7, 8]. In particular the corresponding 4d superconformal indices with the defect

were found to be closely related to the Ruijsenaars-Schneider (RS) elliptic analytic finite

difference operators (A∆Os). Later these results were extended to many other cases: class Sk

4d theories [9], compactifications of A2 and D4 minimal 6d SCFTs [10] and compactifications

of rank one E-string theories [11]. In some of these cases the obtained A∆Os were already

known in the literature. For example in E-string compactifications van Diejen (vD) model

[12, 13] was observed. But in some cases operators were previously unknown as in the case

of the minimal 6d SCFTs compactifications. Study of such novel operators constitutes an

interesting field of research with some initial steps already taken in this direction [14, 15].

From the point of view of physics the connection of superconformal indices in the pres-

ence of defects with the integrable quantum mechanics Hamiltonians allows one to bootstrap

index of an arbitrary theory obtained by compactifying corresponding 6d theory on a punc-

tured Riemann surface. In particular if we know the eigenfunctions of the corresponding

A∆O we can compute the index of any theory obtained in such compactifications including

non-Lagrnagian theories for which there are no other methods of computing the index. As

mentioned previously, the first setting where these ideas were tested are 4d class-S theories

obtained in the compactifications of 6d (2, 0) theory [7]. In this case the corresponding inte-

grable system was given by elliptic RS model. Eigenfunctions of the elliptic RS Hamiltonians

are not known in general but some of their limits are well studied in the mathematical lit-

erature. These limits were used in order to prove previously established relations [16–18] of

superconformal indices with the Macdonald and Schur polynomials allowing one to compute

indices of class S non-Lagrangian theories.

The construction outlined above relies on the intermediate 5d layer. For things to work

there should exist an effective 5d gauge theory obtained by compactifying original 6d SCFT

on a circle with a choice of holonomies for its global symmetries. In particular different 5d

compactifications lead to different types of punctures on the Riemann surfaces used to ob-

tain 4d theories. One of the interesting problems related to this fact is the compilation of

the dictionary between known compactifications of various 6d SCFTs and elliptic integrable

systems. In our previous paper [19] we have considered compactifactions of the 6d mini-

mal (DN+3, DN+3) conformal matter theories [20, 21]. In particular we have derived A∆Os

corresponding to the intermediate 5d SU(N + 1) gauge theory or equivalently the AN type

puncture on the compactification surface. These elliptic A∆Os appeared to be previously

unknown AN generalizations of vD model. On the other hand there are at least two more

5d effective descriptions of 6d SCFTs corresponding to USp(2N) and SU(2)N gauge theories

giving rise to the punctures with the same CN and (A1)
⊗N global symmetries. These two

descriptions should lead to additional higher-rank generalizations of the vD model.

In our present paper we follow this line of research and closely study compactifications

of the minimal (DN+3, DN+3) conformal matter theory on a Riemann surface with the CN -

type punctures. In particular we concentrate on the next to simplest case of N = 21 and

1The simplest case of N = 1, as well as the case of (A1)
1, were studied in our previous paper [19]. As a

result we observed two alternative parametrizations of the standard BC1 vD model.
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derive corresponding infinite tower of A∆Os. We also devote part of the paper to the study

and proof of some remarkable properties of these operators that follow from the geometry

of corresponding compactifications. In particular we prove the novel kernel property for two

operators of different type but same rank. We also discuss commutation property of obtained

operators.

The paper is organised as follows. In section 2 we review our previous results for AN

type operators. In addition to the previous results we also derive full tower of such A∆Os

which was not obtained previously. In Section 3 we derive in details novel generalization of

vD operators corresponding to C2 root system.2 In section 4 we discuss properties of derived

C2 A∆Os. In particular we pay special attention to a new kernel function for simultaneously

A2 and C2 operators and give fully analytic proof of the corresponding kernel equation. We

also briefly discuss commutation relations and check them perturbatively in expansion. In

section 5 we briefly summarize our results and discuss plans for the future research further

developing these results. Finally the paper has a number of Appendices collecting useful

formulas as well as technical details of various calculations in our paper.

2 AN operators.

In this section we will briefly review derivation of the AN generalization of the van Diejen

operator. So called basic version3 of this operator has been derived in our previous paper

[19]. Here we will extend this result to the full tower of operators.

Just as in [19] in order to derive A∆O we start with the 4d three-punctured sphere theory

which was first introduced in [21]. This theory is obtained in the compactification of the 6d

minimal (DN+3, DN+3) conformal matter on a sphere with two maximal SU(N+1) punctures

and one minimal SU(2) puncture. The quiver of this theory is shown in Figure 1. In addition

to the global symmetry, the punctures are characterized by the moment map operators.

In particular both SU(N + 1) maximal and SU(2) minimal punctures are characterized by

(2N + 4) mesonic and 2 baryonic moment maps:

Mu = N+ 1x ⊗
(
2N+ 4uN+3v−N−1w−2 ⊕ 1

(uvN+1)2N+4

)
⊕N+ 1

x ⊗ 1
(uNw2)2N+4 ,

Mv = N+ 1y ⊗
(
2N+ 4vN+3u−N−1w−2 ⊕ 1

(vuN+1)2N+4

)
⊕N+ 1

y ⊗ 1
(vNw2)2N+4 ,

Mw = 2z ⊗
(
2N+ 4

(uvw−2)−N−1 ⊕ 1
(wvN+1)2N+4 ⊕ 1

(wuN+1)2N+4

)
, (2.1)

where ai, u, v, w are fugacities of the Cartans of the 6d global SO(4N + 8) symmetry. Sub-

scripts of the moment maps written above denote their charges w.r.t. to these symmetries.

Further S-gluing two such trinions along the maximal punctures we can obtain four-

punctured sphere with zero flux two maximal and two minimal punctures. To obtain the

2We would like to stress that the operator we derive is different from the standard higher-rank vD operator

[12, 13] since the latter one is associated with the affine BCn type root system while we discuss C2 root

system in our paper. We expect that the canonical BCn vD model can be obtained in a similar manner using

compactifications of the rank-Q E string theory. Unfortunatelly so far only compactifications on the spheres

with two punctures are known for these theories so we are not able to prove this conjecture.
3See the definition of the basic operators and their towers below.
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Figure 1. (a) AN three-punctured sphere with two maximal and one minimal puncture. (b) AN

four-punctured sphere obtained by S-gluing two three-punctured spheres

corresponding 4d gauge theory we should just take two copies of trinion theories shown

in Figure 1 and then identify and gauge corresponding global symmetries of the maximal

punctures. Here and everywhere else in the paper all operations with gauge theories are

expressed in terms of the superconformal indices. In this langauge, the gluing procedure

takes the following form:

KA
4 (x, x̃, z, z̃) = κN

∮ N∏
i=1

dyi
2πiyi

N+1∏
i ̸=j

1

Γe

(
yi
yj

)K̄A
3 (x̃, y, z̃)K

A
3 (x, y, z) . (2.2)

where KA
3 (x, y, z) is the index of the trinion with y being fugacity of the global SU(N + 1)

symmetry of the puncture we glue along and K̄A
3 is the index of the conjugated trinion.

Finally κN is the usual constant given by:

κN ≡
(q; q)N∞ (p; p)N∞

(N + 1)!
. (2.3)

Performing this S-gluing operation we obtain the four-punctured sphere theory shown

in Figure 1 with the corresponding superconformal index specified in (B.1). This theory was

previously obtained by us in [19] to derive basic AN A∆Os. Now in order to derive the oper-

ator we should close two minimal punctures of this four-punctured sphere. To do it we should

break the global symmetry of the puncture. This can be achieved by giving a non-trivial

vev ⟨∂L
12∂

K
34M⟩ ̸= 0 to the derivatives of one of the moment map operators. When we close

punctures with at least one of K or L not equal to zero, i.e. vev is space-time dependent,

we effectively insert defect into the theory [7, 22]. At the level of the superconformal index,

closing the puncture amounts to giving a corresponding weight to the fugacity of the punc-

ture’s global symmetry. Once we do it we hit a pole of the index. Then computation of the
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residue of this pole results in the superconformal index of the IR theory that the UV theory

flowed to due to the introduction of the vev. In our case we choose to close SU(2)z minimal

puncture with the defect and SU(2)z̃ puncture without, i.e. choosing L = K = 0 in the vev.

In particular let’s say that we are going to compute A∆O acting on the puncture with the

moment maps of charges h̃i and an overall U(1) charge

h̃ ≡
2N+6∏
i=1

h̃i . (2.4)

For example the moment maps of the SU(N + 1)x puncture of the trinion shown in Figure 1

correspond to Mu operators specified in (2.1) and have the following charges:

h̃i = uN+3v−N−1w−2ai, i = 1, . . . , 2N + 4 ,
2N+4∏
i=1

ai = 1 ,

h̃2N+5 =
(
uvN+1

)2N+4
, h̃2N+6 =

(
uNw2

)−2N−4
, h̃ =

(
uw−1

)8(N+2)
, (2.5)

where we have flipped the charge h̃2N+6 of the last moment map since this parametrization

will be more natural for our operators and in this case all of the moment maps of the maximal

puncture transform in the fundamental representation of SU(N + 1)x. We can now notice

from (2.1) that charges of the minimal puncture moment maps are related to the charges of

the moment maps of the maximal punctures by simple relation

h̃
SU(2)
i =

(
h̃
SU(N+1)
i

)−1 (
h̃SU(N+1)

) 1
4
, (2.6)

So we can express everything in terms of only the moment maps of the maximal puncture

we act on. Now assume we give vevs to the moment maps (mesonic or baryonic) with charges

h̃−1
i h̃1/4 of both SU(2)z and SU(2)z̃. Moment maps we use should be the same in order to

keep total flux of the 6d global symmetries zero. At the level of the index calculations it

corresponds to computing the residue of the index of the four-punctured sphere theory at the

pole

z = Z∗
i;L,M = (pq)−

1
2 h̃ih̃

− 1
4 q−Mp−L, z̃ = Z̃∗

i;0,0 = (pq)−
1
2 h̃−1

i h̃
1
4 q−M̃p−L̃ , (2.7)

where L,M, L̃, M̃ are positive integers corresponding to the powers of derivatives inside the

vev. As we mentioned previously it is enough to introduce defect only for one of the two punc-

tures. Hence we choose M̃ = L̃ = 0 and keep L ,M general. Then we compute corresponding

residues of the index of the four-punctured sphere theory and obtain theory for the tube with

two maximal SU(N + 1) punctures and a codimension-two defect. Its superconformal index

is given by4:

KA
(2;i;L,M)(x, x̃) ∼ Resz→Z∗

i;L,M ,z̃→Z̃∗
i;0,0

KA
4 (x, x̃, z, z̃) (2.8)

4Here and further we often omit some overall factors which are irrelevant for the derivations of A∆Os.

Because of this we use ∼ instead of strict equality here.
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Finally in order to obtain desired A∆O we glue our tube with the defect to an arbitrary

Riemmann surface with maximal SU(N + 1)x̃ puncture. As the result of this gluing we

expect to obtain action of a finite-difference operator on the index I(x̃) of this 4d N = 1

theory:

O(AN ;hk;L,M)
x · I(x) = κN

∮ N∏
j=1

dx̃j
2πix̃j

N+1∏
i ̸=j

1

Γe

(
x̃i
x̃j

)KA
(2;i;L,M)(x, x̃)I(x̃) (2.9)

Details of all the calculations summarized above are given in Appendix B. They result in the

following operator:

O(AN ;h̃k;M,L)
x =

∑
(
∑N+2

i=1 mi=M)

∑
(
∑N+2

i=1 li=L)

∑
(
∑N+1

i=1 si=M−mN+2)

∑
(
∑N+1

i=1 ri=L−lN+2)

C l⃗,m⃗,r⃗,s⃗
L,M ×

N+1∏
i=1

∏2N+6
b̸=k

∏si−1
n=0 θp

(
(pq)

1
2 h̃−1

b x−1
i qn−mip−li

)∏ri−1
n=0 θq

(
(pq)

1
2 h̃−1

b x−1
i qsi−mipn−li

)
∏N+1

j ̸=i

∏mj−1
n=0 θp (qn−mip−lixj/xi)

∏lj−1
n=0 θq (qmj−mipn−lixj/xi)∏M−si−1

n=0 θp

(
(pq)

1
2 h̃−1

k x−1
i pri−liqn+si−mi

)∏L−ri−1
n=0 θq

(
(pq)

1
2 h̃−1

k x−1
i pn+ri−liqM−mi

)
∏mN+2−1

n=0 θp

(
(pq)−

1
2 h̃kh̃

− 1
2x−1

i p−L−liqn−M−mi

)∏lN+2−1
n=0 θq

(
(pq)−

1
2 h̃kh̃

− 1
2x−1

i pn−L−liqmN+2−M−mi

)
∏M−mN+2−si−1

n=0 θp

(
(pq)

1
2 h̃−1

k h̃
1
2xip

liqn+mi

)∏L−lN+2−ri−1
n=0 θq

(
(pq)

1
2 h̃−1

k h̃
1
2xip

n+liqM−mN+2−si
)

∏mi−1
n=0 θp

(
(pq)

1
2 h̃−1

k h̃
1
2xipL−lN+2+liqn+M−mN+2

)∏li−1
n=0 θq

(
(pq)

1
2 h̃−1

k h̃
1
2xipn+L−lN+2qM−mN+2+mi

)
1∏N+1

j ̸=i

∏ri−1
n=0 θq

(
qmj−mi+si−sjpn+lj−li−rjxj/xi

)∏si−1
n=0 θp

(
qn+mj−mi−sjplj−li−rjxj/xi

)×
∆mi−si

q (xi)∆
li−ri
p (xi) , (2.10)

where C l⃗,m⃗,r⃗,s⃗
L,M are x-independent constant factors given by,

C l⃗,m⃗,r⃗,s⃗
L,M =

∏M−mN+2
n=1 θp(q−n)

∏L−lN+2
n=1 θq(qmN+2−Mp−n)∏si

n=1 θp(q−np−ri)
∏ri

n=1 θq(p
−n)

∏mi
n=1 θp(q−np−li)

∏li
n=1 θq(p

−n)∏2N+6
b ̸=k

∏mN+2−1

n=0 θp
(
h̃kh̃

− 1
2 h̃bq

n−Mp−L
)∏lN+2−1

n=0 θq
(
h̃kh̃

− 1
2 h̃bq

mN+2−Mpn−L
)

∏mN+2
n=1 θp

(
pq h̃−2

k h̃
1
2 q2M−np2L−lN+2

)∏lN+2
n=1 θq

(
pq h̃−2

k h̃
1
2 q2Mp2L−n

)
(2.11)

Also ∆s are shift operators defined as follows:

∆m
a (xi)f(x) ≡ f (xi → amxi) , a = q, p . (2.12)
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The operator contains all shifts of the form qmiplixi where m⃗ and l⃗ are all possible partitions

of length N+1 of M and L correspondingly. At each level, i.e. fixed M and L there are 2N+6

operators due to 2N +6 moment maps with the charges h̃kh̃
− 1

4 . There are also 2N +6 other

operators obtained by giving vevs to the flipped moment maps of the charge h̃−1
k h̃

1
4 . They

have similar form and properties so we do not present them here. All the operators should

commute with each other, and we checked this in expansion in p, q for a few of the simplest

cases. Now we will refer to the case M = 1 and L = 0, or vice versa, as basic operators.

These basic operators for AN generalizations of vD model were derived by us previously in

[19]. The operators above also reproduce our previous results when we fix M = 1, L = 0 or

M = 0, L = 1. Further in our paper we will also need the basic operator obtained by closing

flipped moment maps. This operator can be found in [19] and has the following form:

O(AN ;h̃−1
i ;1,0)

x · I(x) ≡N+1∑
l ̸=m

A
(AN ;h̃−1

i ;1,0)
lm (x)∆−1

q (xl)∆q(xm) +W (AN ;h̃−1
i ;1,0)

(
x, h̃

) I(x) , (2.13)

where the shift part of this operator is given by

A
(AN ;h̃−1

i ;1,0)
lm (x) =

2N+6∏
j=1

θp

(
(pq)

1
2 h̃−1

j x−1
l

)
θp

(
xm
xl

)
θp

(
q xm

xl

) N+1∏
k ̸=m ̸=l

θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
xk
xl

)
θp

(
xm
xk

) ,

(2.14)

and the constant part is given by:

W (AN ;h̃−1
i ;1,0)(x, h̃) =

2N+6∏
j ̸=i

θp

(
q−1h̃ih̃j h̃

−1/2
)

θp

(
q−2h̃2i h̃

−1/2
) N+1∏

k=1

θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
(pq)−

1
2 h̃ih̃−1/2q−1x−1

k

) +

N+1∑
m=1

2N+6∏
j ̸=i

θp

(
(pq)

1
2 h̃jxm

)
θp

(
(pq)

1
2 h̃−1

i h̃1/2qxm

) N+1∏
k ̸=m

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
q−1 xk

xm

)
θp

(
xm
xk

) . (2.15)

This constant part is elliptic function in each xi variable with periods 1 and p. It has poles

in the fundamental domain at the following positions:

xi = q±1xr , xi = sq±
1
2P

− 1
2

i , xi = sq±
1
2 p

1
2P

− 1
2

i , s = ±1 , (2.16)

where we defined

Pi ≡
N∏
j ̸=i

xj . (2.17)
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From expression (2.15) it looks like there are extra poles in the constant part, but careful

examination shows that residues at these values of x’s are zero so there are no real poles

there. At the poles (2.16) we have the following residues:

Resxl=qxrW
(AN ;h̃−1

i ;1,0)(x, h̃) = − qxr

(p; p)2∞ θp (q−1)

2N+6∏
j=1

θp

(
(pq)

1
2 h̃jxr

)
×

N+1∏
k ̸=l ̸=r

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
q−1 xk

xr

)
θp

(
xr
xk

)
Resxl=q−1xr

W (AN ;h̃−1
i ;1,0)(x, h) =

q−1xr

(p; p)2∞ θp (q−1)

2N+6∏
j=1

θp

(
(pq)

1
2 h̃−1

j x−1
r

)
×

N+1∏
k ̸=l ̸=r

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
q−1 xr

xk

)
θp

(
xk
xr

)
Res

xl=sq−
1
2 P

− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h) = s

q−
1
2P

− 1
2

l

2 (p; p)2∞ θp (q−1)

2N+6∏
j=1

θp

(
sp1/2h̃jP

−1/2
l

)
×

N∏
k ̸=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
sq−1/2P

−1/2
l x−1

k

)
θp

(
sq−1/2P

1/2
l xk

) ,

Res
xl=sq

1
2 P

− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h̃) = −s

q
1
2P

− 1
2

l

2 (p; p)2∞ θp (q−1)

2N+6∏
j=1

θp

(
sp1/2h̃jP

−1/2
l

)
×

N∏
k ̸=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
sq−1/2P

−1/2
l x−1

k

)
θp

(
sq−1/2P

1/2
l xk

) ,

Res
xl=sp

1
2 q−

1
2 P

− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h̃) = s

q−
1
2 p

3
2 h̃−

1
2P

1
2
l

2 (p; p)2∞ θp (q−1)

2N+6∏
j=1

θp

(
sh̃jP

−1/2
l

)
×

N∏
k ̸=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
sp−1/2q−1/2P

−1/2
l x−1

k

)
θp

(
sp1/2q−1/2P

1/2
l xk

) ,

Res
xl=sp

1
2 q

1
2 P

− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h̃) = −s

q
1
2 p

3
2 h̃−

1
2P

1
2
l

2 (p; p)2∞ θp (q−1)

2N+6∏
j=1

θp

(
sh̃jP

−1/2
l

)
×

N∏
k ̸=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk

)
θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
sp−1/2q−1/2P

−1/2
l x−1

k

)
θp

(
sp1/2q−1/2P

1/2
l xk

) ,

(2.18)

These are completely general expressions for the whole family of AN operators.
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3 Derivation of C2 operators.

In this section we will discuss derivation of the C-type rank-2 analytic finite difference op-

erators A∆O. In our previous paper [19] we have already derived the basic operator for AN

generalization of van Diejen model and the calculation of the full tower of these operators

is summarized in Section 2. Unfortunately full CN generalization is still out of reach for us

due to technical complications but we can concentrate on the study of rank-2 generalizations

with C2 root system.

We will derive C2 operator corresponding to the insertion of the codimension-two defect

due to the nontrivial vev of the holomorphic derivatives of the moment maps ⟨∂K
±M⟩ ≠ 0. To

simplify our calculations of A∆O we will start with the derivation of four- and three-punctured

spheres with C2 type punctures.

The basic CN trinion was already derived by us in Appendix B.5 of [19] and is shown

in Figure 2(b). Generalizations of this trinion to the cases of three maximal punctures and

higher numbers of minimal punctures can also be found in [23]. In order to derive this trinion

we used a tube theory with one USp(2N) and one SU(N + 1) maximal punctures shown in

Figure 2(a). This theory was first discussed in [24]. In order to obtain trinion theory shown

in Figure 2(b) we start with the three-punctured sphere with two maximal SU(N + 1) and

one minimal SU(2) punctures and glue two ANCN tubes to the maximal punctures. The

moment maps of the punctures of the resulting trinion are given by (2N + 6) mesons both

for maximal and minimal punctures:

Mx = 2Nx ⊗ (2N+ 6)
w

2
(N+2)2

N+3

, My = 2Ny ⊗ (2N+ 6)
w

2
(N+2)2

N+3

,

Mz = 2z ⊗ (2N+ 6)
w

2
(N+2)2

N+3

, (3.1)

where w is one of the parameters of Cartans of the global SO(4N + 8) symmetry of the 6d

minimal conformal matter theory. In general we will use two types of parametrization of 6d

global symmetry in this paper. First one is natural to use in compactifications with CN type

punctures and it is given by

ãi , i = 1, . . . , 2N + 6 ,
2N+6∏
i=1

ãi = 1 , w . (3.2)

Another parametrization is useful when we work with AN expressions and is given by:

ai , i = 1, . . . , 2N + 4 ,

2N+4∏
i=1

ai = 1 , u , v , w . (3.3)

These two parametrizations are related by the following map that we will often need in our

calculations:

ãl = (uv)−N−1w− 2
N+3al , l = 1, . . . , 2N + 4 ,

ã2N+6 = u2(N+1)(N+2)w2N+2
N+3 , ã2N+5 = v2(N+1)(N+2)w2N+2

N+3 . (3.4)
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2N

2N+6

N+1

1

2

1

0

(a) A tube with one SU(N + 1)

and one USp(2N) puncture.

N+ 22N 2N

2N+ 6

2

xy

z

w2N+4

1
N+2

w2N+4

1
N+2

w2N+4 1
N+2

w−2N+2
N+3

N+1
N+2

w−4N−8

2N+1
N+2

w−4N−8

2N+1
N+2

(b) Trinion with two maximal USp(2N) and one mini-

mal SU(2) puncture.

Figure 2. Tube and trinion with maximal CN punctures.

Now in order to derive finite difference operators we should proceed in the same way as in

the case of AN operators summarized in Section 2. We start by taking two CN trinion theories

T A
x,y,z whereA is the non-zero flux of the trinion and x, y, z in the subscript are fugacities of the

global symmetries of two maximal and one minimal punctures correspondingly. Then we take

an arbitrary N = 1 theory obtained in the compactification of the minimal (DN+3, DN+3)

conformal matter theory on the Riemmann surface of genus g with s punctures denoted as

Cg,s with at least one USp(2N)x̃ maximal puncture. Gluing all three surfaces together along

the maximal punctures results in a Riemmann surface of the same genus and global symmetry

fluxes but two extra minimal punctures. We will be performing all these operations at the

level of superconformal indices. There gluing amounts to identifying global symmetries of the

punctures we glue and gauging it. So for the indices we can write down the following identity

after gluing:

I
[
Cg,s(x̃)⊕ T̄ A

x̃,y,z1 ⊕ T A
y,x,z2

]
=

(q; q)4∞ (p; p)4∞
24 · 2! · 2!

∮ 2∏
i=1

dx̃i
2πix̃i

dyi
2πiyi

N∏
i=1

1

Γe

(
y±2
i

) ×
N∏
i<j

1

Γe

(
y±1
i y±1

j

) N∏
i=1

1

Γe

(
x̃±2
i

) N∏
i<j

1

Γe

(
x̃±1
i x̃±1

j

)KC
3 (x, y, z2)K̄

C
3 (x̃, y, z1)I [Cg,s(x̃)] , (3.5)

where I [Cg,s] is the index of a theory obtained by compactifications of 6d theory on the

Riemmann surface Cg,s and KC
3 (x, y, z) is the index of the trinion theory shown in Figure 2(b)

while K̄C
3 (x, y, z) is its conjugate. Definition and properties of the elliptic Γ-function Γe (x)
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are given in Appendix A. Then, closing SU(2)z and SU(2)z̃ minimal punctures with or without

introduction of defects we can obtain finite difference operators. As discussed previously in

order to close minimal punctures we have to give certain weights to corresponding global

symmetry fuagcities z1 and z2. As a result we get the follwoing identity

lim
z1→Z∗

1 ,z2→Z∗
2

I
[
Cg,s(x)⊕ T̄ A

x,y,z1 ⊕ T A
y,x̃,z2

]
∼ O · I [Cg,s(x)] , (3.6)

where O is some finite difference operator, and in case we close punctures without introducing

defects we just obtain the identity operator.

Here for convenience we will not compute the full expression (3.5) directly right away. Just

as for AN operators derived in Section 2 it appears to be much easier to perform calculation

in a slightly different way. First we derive the index of the four-punctured sphere with zero

flux, two maximal USp(2N) and two minimal SU(2) punctures. For this purpose we perform

S-gluing of two trinions T AC
x,y,z with SU(N + 1) and USp(2N) maximal punctures and SU(2)

minimal punctures each. This kind of trinions can be derived by appropriate gluing of ANCN

tube theory shown in Figure 2(a), to one of the maximal punctures of AN trinion introduced

in [21]. Superconformal index of the resulting four-punctured sphere theory is given by:

KC
4 (x, x̃, z, z̃) = κN

∮ N∏
i=1

dyi
2πiyi

N+1∏
i ̸=j

1

Γe

(
yi
yj

)K̄AC
3 (x̃, y, z̃)KAC

3 (x, y, z) . (3.7)

where KAC
3 (x, y, z) is the index of the trinion with y being SU(N +1) fugacity and κN is the

usual constant given in (2.3). Geometrically this operation is shown in Figure 5(a).

Next we close one of the two minimal punctures by giving nonzero vev to one of the Mz

moment maps given in (3.1). At the level of the index computations this means that the

corresponding global symmetry fugacity should be consistent with the vev, i.e. in our case

we should fix z̃ fugacity to

z̃ = Z̃∗
i;K,M ≡ (pq)−

1
2w2

(N+2)2

N+3 ãiq
−Kp−M , (3.8)

where ãi can be chosen arbitrary since all the expressions are symmetric w.r.t. permutations

of ãi. IntegersK andM correspond to an order of the derivative of the moment map in 34 and

12 planes correspondingly, i.e. we give vev to ⟨∂M
12∂

K
34M̂i⟩ ̸= 0. Physically this corresponds

to introducing various codimension two defects into 4d theory. For the first SU(2)z̃ minimal

puncture we choose to close it without introducing any defect, which in turn corresponds to

K = M = 0 choice in (3.8).

At this value of z̃, the superconformal index (3.7) of the four-punctured sphere has a

pole. Computing the residue at this pole we obtain the index of the three-punctured sphere:

KC
(3;i,0)(x , y , z) ∼ Resz̃→Z̃∗

i;0,0
KC

4 (x , y , z , z̃) (3.9)

Here subscript (3; i, 0) refers to the fact that we obtain three-punctured sphere by closing

minimal puncture of the four-punctured sphere choosing ãi for the vev in (3.8) and not

introducing a defect, which corresponds to the choice K = M = 0 in the same equation.
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N+ 2 N+ 12

2N+ 52N 2N 1

z
1

N+2
1

N+2w2N+4

1
N+2

w −
4N−

8
N
+
1

2(
N
+
2)

w
4
(N

+
2
)
3

(N
+
1
)(
N
+
3
) ã

−
2

N
+
1

i

2

w
−2

N
+
2

N
+
3

N
+
1

N
+
2

w
2(N

+
2) 2

(N
+
1)(N

+
3)ã −

1N
+
1

i

1

w
−

2
(N

+
2
)
3

(N
+
1
)(
N

+
3
)
ã

1
N

+
1

i1

w
2N

+
41 N

+
2

x x̃
w− 2(N+2)2

N+3 ã−1
i

1

t t̃

Figure 3. Three-punctured sphere theory with two maximal USp(2N) punctures and one minimal

SU(2) puncture obtained after gluing (3.7) and closing one minimal SU(2)z̃ puncture without defect.

Solid and dashed line attached to the gauge node denotes multiplet in AS and AS representation

correspondingly.

Calculation of (3.7) and (3.9) results in the theory shown in Figure 3. Detailed derivations

of this section can be found in Appendix C.

Now that we have obtained the desired three-punctured sphere theory we are ready to

derive A∆O. For this purpose we should close the remaining minimal SU(2)z puncture by

giving nontrivial vev ⟨∂M
12∂

K
34M⟩ ̸= 0 to a derivative of one of its moment maps. In order

to get zero total flux through the resulting two-punctured sphere we should choose the same

moment map as we did closing SU(2)z̃ minimal puncture previously. The difference is that

now we have to choose non-trivial derivative that is at least one of K and M numbers is not

zero. Physically this corresponds to introducing codimension two defect into the tube theory

with two maximal punctures as shown in Figure 5(b). At the level of the index we should

give the following value to the z-fugacity:

z = Z∗
i;K,M ≡ (pq)−

1
2w−2

(N+2)2

N+3 ã−1
i q−Kp−M , (3.10)

Then, according to (3.6), capturing the corresponding pole and gluing the resulting tube with

two maximal USp(2N) punctures to an arbitrary theory with at least one puncture of this

type as shown in Figure 5(c), we obtain an A∆O. However, technically it sometimes appears

not to be as straightforward. In particular if we perform these operations with the expression

(C.12) instead of A∆O we obtain some integral-finite difference operator. It is highly possible

that in fact this operator can be written in the form of A∆O. However technical issues make

it too difficult task and we leave it for future investigation.

Here we will instead concentrate on the derivation of next to the lowest rank C2 operator.

This case is simpler to analyze. For example, in our trinion theory shown in Figure 3, when

N = 2 the AS multiplet of the right SU(3) gauge node becomes just antifundamental, and a

chain of duality transformations can be used to simplify the theory. These calculations are
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summarized in Appendix C. As a result we obtain single-node SU(6) gauge theory shown in

Figure 4 with the corresponding index specified in (C.13).

6

2z 4 x

1 9

4

x̃

w− 32
3

1

−3
2w − 30415 ã
i

1
2

w− 32
3

w
16
3

1
2 1

2

w
−
16
15

1
2

w
16
3

1

w − 32
5

1
w
−
32
5

Figure 4. Three-punctured sphere theory with two maximal USp(4) and one minimal SU(2) punc-

tures. Dashed line starting and ending on the gauge SU(6) node as previously corresponds to the

matter in the AS representation.

Finally, we can close SU(2)z puncture. In particular we give the following weight consis-

tent with (3.8) to the fugacity z:

z = Z∗
i;K,0 = (pq)−

1
2w− 32

5 a−1
i q−K . (3.11)

Performing this closure we obtain the index of the theory for two punctured sphere with

two USp(4) maximal punctures

KC
(2;i;K,0)(x , x̃) ∼ Resz→Z∗

i;K,0
KC

(3;i,0)(x , x̃ , z) (3.12)

The index itself is specified in (C.18). This time it does not have natural gauge theory

interpretation in case of general K due to the presence of the codimension two defect.

As a final step of our derivation, we glue the obtained tube with the defect to an arbitrary

N = 1 theory with at least one maximal USp(4) puncture and obtain A∆O as follows:

O(C2;hk;K,0)
x · I(x) ∼

(q; q)2∞ (p; p)2∞
22 · 2!

∮
dx̃1,2
2πix̃1,2

1

Γe

(
x̃±2
1,2

)
Γe

(
x̃±1
1 x̃±1

2

) ×
KC

(2;i;K,0)(x, x̃)I(x̃) (3.13)

Details of this calculation can be found in Appendix C. It leads to the following expression

for A∆O:
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y x̃

z̃

K̄C
3 (x̃, y, z̃)⊕y

yx

z

KC
3 (x, y, z)

x̃

z̃

KC
4 (x, x̃, z, z̃)

x

z

(a) Gluing two trinions.

x̃x

KC
(2;i;K,0)(x, x̃)

x̃

Z̃∗
i;0,0

Resz→Z∗
i;K,0

Resz̃→Z̃∗
i;K,0

KC
4 (x, x̃, z, z̃)

x

Z∗
i;K,0

(b) Closing minimal punctures of the four-punctured sphere.

x̃

I(x̃)

⊕x̃

x x̃

K(2;i;K,0)(x, x̃)

O(C;hi;K,0)
x ·

x

I(x)
(c) Gluing tube with the defect to an arbitrary Riemann surface.

Figure 5. On the figures above we summarize all the steps we go through in order to derive C2 A∆O

given in (3.14). First as shown on the Figure (a) we glue two trinions with two maximal USp(4) (shown

with green) and one minimal SU(2) (shown with orange) punctures each. For one of the trinions we

conjugate all the charges in order to perform S gluing. At the level of the superconformal index this

operation is expressed in (3.7). Next, as shown on the Figure (b), we close two minimal punctures

of the four-punctured sphere. This operation is performed by giving vev ⟨∂K
+ M̂i⟩ ̸= 0 to holomorphic

derivative of one of the moment map operators with the U(1) charge hi. As the result we obtain tube

theory with two maximal USp(4) punctures and codimension two defect introduced. On the Figure we

denote this defect with the red ring. Finally, as the last step of our algorithm shown on the Figure (c),

we glue this tube with the defect to an arbitrary surface with at least one maximal USp(4) puncture.

This results in the action of the set of certain A∆Os on the index of the original theory.
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O(C2;hk;K,0)
x =

∑⃗
K

k1,−∑
m1=−k1,+

k2,−∑
m2=−k2,+

C̃k
K⃗

10∏
l ̸=k

2∏
i=1

∏
si=±1

2simi−1∏
l1=−ki,si+simi

θp

(
ql1x−2si

i

)−1
×

si(ki,−−ki,+)−1∏
l2=−ki,si

θp

(
ql2x−2si

i

)−1 s2m2−s1m1−1∏
l3=−k2,s2−s1m1

θp
(
ql3xs11 x−s2

2

)−1 ×

2∏
j ̸=i

ki,si−kj,sj−1∏
l4=−kj,sj

θp

(
ql4xsii x

−sj
j

)−1 −k1,s1+s2m2−1∏
l5=−k1,s1−k2,s2

θp
(
ql5x−s1

1 x−s2
2

)
×

K−ki,si−1∏
l6=K−ki,si−k5

θp

(
(pq)

1
2hkx

−si
i ql6

)K−k5+ki,si−1∏
l7=K−k5

θp

(
(pq)

1
2hkx

si
i q

l7
)−1

×

−K−ki,si+k5−1∏
l8=−K−ki,si

θp

(
(pq)−

1
2h−1

k x−si
i ql8

)−ki,si+k6−1∏
l9=−ki,si

θp

(
p−1ql9−1h−

1
2hkx

−si
i

)
×

ki,si−k6−1∏
l10=−k6

θp

(
q−1−l10h−

1
2hkx

−si
i

)−1 −k1,s1+s2m2−1∏
l11=−k1,s1−k2,s2

θp
(
ql11x−s1

1 x−s2
2

)
×

ki,si−1∏
l12=−simi

θp

(
(pq)

1
2hlx

si
i q

l12
) ki,si+k6−1∏

l13=k6−simi

θp

(
h−

1
2hkx

si
i q

l13
)
×

K−k5−simi−1∏
l14=−simi

θp

(
(pq)

1
2hkx

si
i q

l14
)
∆−m1

q (x1)∆
−m2
q (x2) , (3.14)

where the constant C̃k
K⃗

is given by

C̃k
K⃗

=
∏
l ̸=k

k5−K−1∏
l1=−K

θp
(
hlh

−1
k ql1

) k6−1∏
l2=0

θp

(
(pq)−

1
2h−

1
2hlhkq

l2
)−2K+k5−1∏

l3=−2K

θp
(
h−2
k ql7

)
×

K−k5+k6−1∏
l4=K−k5

θp

(
(pq)−

1
2h−

1
2h2kq

l5
)−1 K−1∏

l4=K−k6

θp

(
(pq)

3
2h

1
2 ql4

)
×

−K+k5−k6−1∏
l6=−K−k6

θp

(
(pq)

1
2h

1
2h−2

k ql5
)−K+k5+k6−1∏

l7=−K

θp

(
(pq)−

1
2h−

1
2 ql6

)
. (3.15)

We have also introduced notation hi, i = 1, . . . , 10 for U(1) charges of the moment

maps we act on. Notice that according to (3.1) moment maps of both minimal and maximal

punctures have the very same charges, so that in fact

hi = w
32
5 ãi , h ≡

10∏
j=1

hj = w64 , (3.16)
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for both charges of the maximal punctures we act on and minimal punctures we close. We

have also introduced here an overall U(1) charge h. The operator itself is labelled by an index

k according to the choice of U(1) charge hk of the moment map we give vev to in order to

close the minimal puncture and to introduce defects into the theory.

The first sum in the expression is performed over all possible partitions K⃗ = (k1, · · · , k6)
of the integer K. Finally the products in (3.14) should be understood as ordered ones, i.e.,

one should assume
∏n2

i=n1
is just 1 if n2 < n1 since there are no terms in the product. The

coefficient C̃k
K⃗

is chosen so that the x-independent factors of the highest order shift terms

∆±K
q (y1,2) are just one.

As expected obtained operators differ from the canonical BCn vD. In order to obtain

the latter one we should instead consider compactifications of 6d rank-Q E string theory

using the very same approach described in details on our paper. One of the most important

difference from the BCn vD model is the number of parameters it depends on. Higher-rank

(i.e. rank higher than one) vD model depends on p, q and another 9 parameters. This

number of parameters is independent of the rank of the BC type root system. Meanwhile

our C2 operators depend on p, q and another 10 parameters. Moreover in the present paper

due to technical difficulties we failed to derive higher-rank CN generalizations. But from our

construction we can expect them to depend on 2N + 6 parameters corresponding to U(1)

charges of the moment maps.5

Notice that the expression above is not the most general since we could have closed

SU(2)z minimal puncture using general K and M integers in (3.10), but we will concentrate

here only on the case of non-trivial K while putting M = 0. As we see the operator appears

to be quite complicated and it is hard to analyze it. Instead it is useful to write down basic

operator corresponding to the choice of K = 1, i.e. the simplest non-trivial case. Taking into

account six possible partitions K⃗ we can write down explicit form of A∆O:

O(C2;hk;1,0)
x =

2∑
i=1

(
A

(C2;hk;1,0)
i (x, h)∆q(xi) +A

(C2;hk;1,0)
i (xi → x−1

i , h)∆−1
q (xi)

)
+W (C2;hk;1,0)(x, h) ,

A
(C2;hk;1,0)
i (x, h) =

2∏
j ̸=i

1

θp
(
x2i
)
θp
(
qx2i
)
θp

(
xix

±1
j

)θp ((pq) 1
2hkx

±1
j

) 10∏
l=1

θp

(
(pq)

1
2h−1

l xi

)
,

W (C2;hk;1,0)(x, h) =

 2∑
i=1

2∏
j ̸=i

1

θp
(
x2i
)
θp
(
q−1x−2

i

)
θp

(
xix

±1
j

) θp

(
h−

1
2hkxi

)
θp

(
q−1h−

1
2hkx

−1
i

)×

5Similar comments hold for the previously discussed AN operators [19], which depend on p, q and another

2N + 4 parameters.

– 16 –



∏10
l ̸=k θp

(
(pq)

1
2hlxi

)
θp

(
(pq)

1
2hkqxi

) 2∏
m=1

θp

(
(pq)

1
2hkx

±1
m

)
+
(
xi → x−1

i

)+

2∏
i=1

10∏
l ̸=k

θp
(
hlh

−1
k q−1

)
θp

(
(pq)

3
2h

1
2

)
θp
(
q−2h−2

k

)
θp

(
(pq)

1
2 q−1h

1
2h−2

k

) θp

(
(pq)

1
2hkx

±1
i

)
θp

(
(pq)−

1
2h−1

k q−1x±1
i

) +

2∏
i=1

10∏
l ̸=k

θp

(
(pq)−

1
2h−

1
2hkhl

)
θp

(
(pq)−

1
2h−

1
2h2kq

) θp

(
(pq)

1
2hkx

±1
i

)
θp

(
p−1q−1h−

1
2hkx

±1
i

) , (3.17)

One thing to be noticed is that just as in the case of vD model, the constant term choice

is not unique. What really defines this constant term are the following properties. First of

all it can be noticed that W (hk;1,0)(x, h) is an elliptic function in both x1 and x2 with periods

1 and p. In the fundamental domain this elliptic function has poles located at:

xi = sq±
1
2 , xi = sq±

1
2 p

1
2 , s = ±1 , (3.18)

which are in fact exactly the same as the poles of vD model. Corresponding residues are

given by:

Res
xi=sq

1
2
W (C2;hl;1,0)(x, h) = −s

q
1
2

10∏
k=1

θp

(
(pq)

1
2 sq−

1
2hk

)
2 (p; p)2∞ θp (q−1)

2∏
j ̸=i

θp

(
(pq)

1
2hlx

±1
j

)
θp

(
sq−

1
2x±1

j

) ,

Res
xi=sq−

1
2
W (C2;hl;1,0)(x, h) = s

q−
1
2

10∏
k=1

θp

(
(pq)

1
2 sq−

1
2hk

)
2 (p; p)2∞ θp (q−1)

2∏
j ̸=i

θp

(
(pq)

1
2hlx

±1
j

)
θp

(
sq−

1
2x±1

j

) ,

Res
xi=sp

1
2 q

1
2
W (C2;hl;1,0)(x, h) = −s

ph−
1
2

10∏
k=1

θp (shk)

2 (p; p)2∞ θp (q−1)

2∏
j ̸=i

θp

(
(pq)

1
2hlx

±1
j

)
θp

(
(pq)−

1
2 sx±1

j

) ,

Res
xi=sp

1
2 q−

1
2
W (C2;hl;1,0)(x, h) = s

pq−1h−
1
2

10∏
k=1

θp (shk)

2 (p; p)2∞ θp (q−1)

2∏
j ̸=i

θp

(
(pq)

1
2hlx

±1
j

)
θp

(
(pq)−

1
2 sx±1

j

) . (3.19)

This concludes our derivation of the C2 A∆O. All possible details of these derivations

can be found in the Appendix C.

4 Properties of the C2 operators.

There is a number of interesting properties that the operators we derived should posses by

construction. In this section we discuss checks and, where it is possible, give proofs of these
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properties using explicit expressions we have derived.

The most important but also most complicated property to discuss is the so-called kernel

property of our operators. The main idea behind it is that the superconformal index of any

N = 1 theory obtained in the compactifications of 6d minimal (D5, D5) conformal matter

theory is a kernel function of our operators. The kernel function is defined by the following

mathematical identity:

O(G1;hi;r,m)
z · I [Cg,s[z, u]] = O(G2;hi;r,m)

u · I [Cg,s[z, u]] . (4.1)

Physically we consider the superconformal index of the theory obtained in the 6d compactifi-

cation on the Riemmann surface Cg,s[z, u] with at least two maximal punctures parametrized

by the fugacities z and u correspondingly. In general there can be as many punctures as

we want. The claim here is that any such superconformal index play the role of the kernel

function for the derived A∆Os according to (4.1). Namely we can act with our operators on

different punctures and we should always obtain the same result. This property is expected

to hold due to an argument coming from the geometry of compactification shown in Figure

6. Equivalently it can be understood from the invariance of the superconformal indices under

S duality transformations.

In principle we can choose any sphere with multiple punctures to check the kernel prop-

erty. Natural simplest candidate would be WZW model for the two-punctured sphere with

two maximal USp(2N) punctures for which the index is given in (C.18) with K = 0. However,

we will check a more interesting and trickier case where two punctures are of different types.

Namely we take the tube theory shown in Figure 2(a) which has one SU(N + 1) and one

USp(2N) maximal puncture. Then for N = 2 the kernel property (4.1) in this case reads:

O(A2;h̃
−1
i ;r,m)

y KAC
2 (x, y) = O(C2;hi;r,m)

x KAC
2 (x, y) , (4.2)

where KAC
2 (x, y) is the index of the tube specified in (C.5) with x and y being fugacities of

USp(4) and SU(3) punctures correspondingly. Operators O(A2;h̃i;1,0)
y and O(C2;hi;1,0)

x are given

in (2.13) and (3.17) correspondingly. Notice that in order for the kernel property to work we

need to close minimal punctures in the same way on two sides of the equation, i.e. we have

to give vev to the same moment map of the minimal puncture. In particular in A2 case we

should give vevs to the minimal puncture moment map of the charge h̃−1
i h̃

1
4 where h̃i are

given in (2.5). At the same time, in C2 case minimal puncture is closed by giving vev to the

moment map of charge hi specified in (3.16). Using the map (3.4) we can see that the only

map that matches between the two is

h̃−1
10 h̃

1
4 = v−24w−8 = w− 32

5 ã−1
10 = h10 . (4.3)

If we would like to check the kernel property for other ways of closing minimal punctures we

should consider A2 operators (2.10) with the non-flipped moment maps so that in this case

we close the minimal puncture with the vevs of the moment map with charge h̃ih̃
− 1

4 . Because

of this complication here we consider only closing with the vev given to the moment map

of charge (4.3). The proofs for other operators should work identically. Also in our proof
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O(G1;h;k,m)
x · x yx

z

y

S duality

vev ⟨∂m
12∂

k
34Mh⟩ ≠ 0 for z

O(G2;h;k,m)
y · x y

vev ⟨∂m
12∂

k
34Mh⟩ ≠ 0 for z

x

z

y

Figure 6. On this Figure we represent the argument in favor of the kernel property of N = 1 indices.

For this we consider an index of a theory obtained in the compactification of the minimal (D5, D5)

conformal matter theory on a generic Riemann surface with at least two maximal punctures (shown

as colored discs on the Figure) of any types with fugacities x and y as well as one minimal SU(2)

puncture (shown as red crosses) with the fugacity z. For example in case of the A2C2 tube and kernel

property (4.2) one maximal puncture has USp(4) global symmetry while the second one has SU(3)

symmetry. Then we close the minimal puncture by giving space dependent vev ⟨∂m
12∂

k
34M⟩ ≠ 0 to one

of the moment maps of this puncture. As discussed in the paper this corresponds to the introduction

of the codimension-two defect into 4d effective description and results in the action of the A∆O on one

of the maximal punctures of the index of the theory corresponding to the Riemann surface with only

two maximal punctures. This operation can be performed in different duality frames. In each frame

we obtain operators acting on one of the two punctures. Since the result of the calculation should not

depend on the duality frame we choose we conclude that the action of two, possibly different operators,

on two different punctures leads to two expressions equal to each other. Hence we arrive to the kernel

property equation (4.1).

we restrict ourselves to only basic operators (3.17) and (2.13), i.e. we fix r = 1 ,m = 0 (or

equivalently m = 1 , r = 0 on both sides of the kernel equation (4.2). We have to do it since

higher operators specified in (3.14) and (2.10) are too complicated for the analysis. However

the kernel property (4.2) should also work for these higher operators as well.

Since we precisely know explicit expressions for both operators (2.13) and (3.17) as well

as supposed kernel function (C.5) it is straightforward to check this kernel identity. Acting

with finite difference operators of two kinds on the kernel we get two algebraic functions.

Equality of these functions implies validity of the kernel property (4.2). In Appendix D we

give details of the analytic proof of this identity.

Another important property of the derived A∆Os is their commutation with each other

which also directly follows from the S duality of our compactification construction as shown

in Figure 7. Since it does not depend which duality frame we close the minimal punctures
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O(C;h1;k1,m1)
x · O(C;h2;k2,m2)

x · x

vev ⟨∂m2
12 ∂k2

34Mh2⟩ ≠ 0 for z2

vev ⟨∂m1
12 ∂k1

34Mh1⟩ ≠ 0 for z1

x

z1

z2

S duality

[
O(C;h1;k1,m1)

x ,O(C;h2;k2,m2)
x

]
= 0

vev ⟨∂m2
12 ∂k2

34Mh2⟩ ≠ 0 for z2

vev ⟨∂m1
12 ∂k1

34Mh1⟩ ≠ 0 for z1

O(C;h2;k2,m2)
x · O(C;h1;k1,m1)

x · x

vev ⟨∂m1
12 ∂k1

34Mh1⟩ ≠ 0 for z1

vev ⟨∂m2
12 ∂k2

34Mh2⟩ ≠ 0 for z2

x

z2

z1

Figure 7. On this Figure we represent the argument in favor of commutation of A∆Os derived in the

present paper. For this we start with a theory obtained in compactification of 6d minimal (D5, D5)

conformal matter on an arbitrary Riemann surface. This surface has one maximal USp(4) puncture

(orange disc) with fugacity x and two minimal SU(2) punctures (red crosses) with fugacities z1 and z2
correspondingly. Then we introduce codimension two defects into this theory giving space-dependent

vevs to some of the moment maps Mh1
and Mh2

correspondingly. Giving this vev is equivalent to

closing puncture and at the level of the index computations leads to an action of two different A∆Os.

We can perform this operation in any duality frame and the result should not depend on the choice

of a particular frame. Hence the action of operators on the index does not depend on their order.

Since the compactification surface, and hence the effective 4d descriptions were chosen arbitrarily we

conclude that the operators themselves also commute.

in, it also does not matter in which order two different A∆Os act on the index. Hence we

conclude that all of operators we derived should commute with each other:

[
O(C2;ha;K1,M1)

x , O(C2;hb;K2,M2)
x

]
= 0 , ∀ a, b = 1, . . . , 10; K1,2 ≥ 0; M1,2 ≥ 0; (4.4)

Here ha and hb are moment maps we give vev to in order to close two minimal punctures

and K1,2,M1,2 are numbers of holomorphic/antiholomorphic derivatives. Unfortunately it

is very hard to prove or even to check these relations for general operators (3.14) of the

full tower. However we can perform checks of the commutation relations (4.4) for the basic

operators, i.e. for the case when K1,2 and M1,2 are taking values 0 and 1. In particular we
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show that: [
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
=
[
O(C2;ha;0,1)

x , O(C2;hb;0,1)
x

]
=[

O(C2;ha;1,0)
x , O(C2;hb;0,1)

x

]
= 0 , ∀ a, b = 1, . . . , 10 . (4.5)

In Appendix E we check these relations. In particular, using ellipticity properties of θp (x)

function we prove that the action of the third type of the commutators on an arbitrary trial

function is zero. Hence these commutators are zero themselves. For the first and second

type of commutators it is hard to prove analytically that their action on a trial function is

zero. Instead we check these identities perturbatively in p and q expansion. These checks

performed up to a sufficiently high order suggest that both of the commutators are indeed

zero.

5 Discussion and outlook.

In this paper we have considered 4d description of the compactification of the minimal

(D5, D5) conformal matter theory on a Riemann surface with USp(4) maximal punctures.

Using this 4d description and introducing codimension-two defect in corresponding theory we

derive C2 generalization of the van Diejen model. In particular we obtain an infinite set of

analytic difference operators acting on the maximal puncture of C2 type. Different operators

of our set correspond to different ways of closing minimal punctures on the compactification

surfaces. They are organized in a decuplet of basic operators and an infinite tower of operators

on top of each of the basic ones.

The operators we obtain are supposed to satisfy interesting and important properties

following directly form the geometry of compactifications. First such property is the com-

mutation of all operators. In our paper, using combination of residue computations and

perturbative expansions we show that at least all basic operators indeed commute with each

other. Second important property is that the superconformal index of any compactification

of the minimal (D5, D5) conformal matter theory on a surface with several USp(4) punctures

is the kernel function of our difference operators. As an example of such kernel function we

considered a tube theory corresponding to the compactification on a sphere with one USp(4)

and one SU(3) puncture. In order to prove the kernel property we should act on two punc-

tures with two different operators: A2 operator derived in [19] from one side and C2 operator

derived in the present paper from the other. This fact makes corresponding kernel function

very interesting for the study. In the paper we managed to prove this kernel property fully

analytically for the basic A2 and C2 operators.

Another result of our paper is derivation of the full tower of AN generalization of van

Diejen operator orginating from the compactification of the minimal (DN+3, DN+3) conformal

matter theory on a Riemann surface with SU(N + 1) maximal punctures. We have already

derived basic operators of this kind in our previous paper [19]. However the tower of operators

was missing and we filled this gap in the present paper.

The present paper is another brick in our program of establishing dictionary between

compactifications of 6d SCFTs and integrable analytic difference operators and studying
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this dictionary in details. There are plenty of ways this research can be continued in. In

particular there should be separate difference operator for each possible 5d compactification

of 6d theory, or equivalently for each possible puncture type from 4d prospective. So far

several results have been observed in this frame. First of all BC1 van Diejen model was

observed in E-string compactifications in several ways [11, 19]. Also previously unknown

A2 and A3 operators were derived using compactifications of the minimal conformal matter

theories of types SU(3) and SO(8) [10]. Finally we have considered compactifications of the

minimal (DN+3, DN+3) conformal matter theories on a Riemann surfaces with AN and C2

(in case of (D5, D5) 6d theory) type punctures. However there are plenty of examples of 6d

SCFT compactificatoins that are known up to date [25–34]. Our main goal is to extend our

results to more examples of compactifications and ideally establish a dictionary between them

and integrable models. Such dictionary can from one point of view shed light on physics of

6d, 5d and 4d supersymmetric gauge theories. From the other point of view this research

program can lead to important results in the field of integrable systems.

First of all as a continuation of the present paper it is natural to consider compactifications

of the minimal (DN+3, DN+3) conformal matter on Riemann surfaces with other types of

punctures. In first place these are of course punctures of CN type for general N . In the

present work we failed to derive explicit form of the corresponding A∆O because of the

technical difficulties but it is worth trying to overcome them. Second candidate for the study

is (A1)
N puncture. Corresponding 4d description was derived in [20]. It would be interesting

to derive explicit form of the corresponding difference operators and study their properties.

For example we immediately know examples of the kernel functions of these operators even

before deriving them explicitly.

Second candidate for the studies are non-minimal (DN+3, DN+3) conformal matter the-

ories, which are obtained as worldvolume theories of the stack of k M5 branes probing DN+3

singularity [26]. In this case the known 5d gauge theory, and hence the puncture type on

Riemann surface, is a direct generalization of (A1)
N case of minimal conformal matter com-

pactification discussed above. It corresponds to the (Ak−1)
2 × (A2k−1)

N × (Ak−1)
2 gauge

theory in 5d and hence the puncture type with the same global symmetry. Trinion theories

with two maximal and one minimal punctures, which are building blocks in the construction

of A∆Os, are also known [35]. So construction of the correspodning difference operators

should be straightforward though can happen to be technically complicated.

Finally one more thing to be made in this direction is the study of the rank Q E-string

theory compactifictaions along the same lines of research. Unfortunately so far corresponding

trinion theories were not obtained but the tube theories were already derived in [36, 37].

Despite we can not derive corresponding A∆O using only tube theories, in this case we can

naturally conjecture it to be BCn van Diejen model. We can at least test this conjecture by

checking corresponding kernel property.

Another possible direction of the research is related to the study of the properties of the

operators we derived. Most interesting questions here are related to the eigenfunctions of these

operators. Deriving full eigenfunctions is of course difficult and most probably impossible.

Realistically we can try to derive certain limits of these eigenfunction. In case we succeed
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these eigenfunctions can play the same role for indices of N = 1 theories as Macdonald and

Schur polynomials played for the indices of N = 2 theories [16–18].

It would also be interesting to establish connections of our research program with other

integrable models emerging in supersymmetric gauge theories. For example integrable systems

derived using compactifications of the worldvolume theory of k M5 branes probing AN−1

singularity were shown to be related to the set of transfer matrices [9, 38–40]. It would be

interesting to understand if similar connection emerges in case of DN+3 singularity.

Also, a relation of E-string theory to the van Diejen model was observed in [41] using

quantization of the corresponding Seiberg-Witten curve. Later, authors of this paper gen-

eralized their result to 6d (1, 0) SCFTs with SO(N) gauge group and (N − 8) fundamental

flavors obtaining yet another set of difference operators [42]. It would be interesting to clarify

precise relation of our construction with the methods and results of these papers.
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A Special functions

Here we summarize some definitions and properties of special functions used in the paper.

Elliptic Gamma function is defined through the following infinite product:

Γe (z) ≡
∞∏

k,m=0

1− pk+1qm+1/z

1− pkqmz
. (A.1)

It can be easily seen that the poles of this function are located at the following values of the

argument:

z = p−kq−m , k,m ∈ Z≥0 . (A.2)
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The following relation will be useful in our calculations:

Γe

(pq
z

)
Γe (z) = 1 . (A.3)

Also we will often deal with the elliptic beta integral formula

κ

∮
dz

4πiz

1

Γe (z±2)

6∏
j=1

Γe

(
tiz

±1
)
=
∏
i<j

Γe (titj) . (A.4)

Here κ is defined to be

κ = (q; q)∞(p; p)∞ =

∞∏
ℓ=0

(1− q1+ℓ)(1− p1+ℓ). (A.5)

AN generalization of this formula is

κN

N !

∮ N∏
i=1

dzi
2πizi

N+1∏
i ̸=j

Γe

(
zi
zj

)−1 N+2∏
i=1

N+1∏
j=1

Γe (sizj) Γe

(
tiz

−1
j

)
=

N+2∏
i=1

Γe

(
Ss−1

i

)
Γe

(
Tt−1

i

) N+2∏
i,j=1

Γe (sitj) ,

(
T =

N+2∏
i=1

ti , S =
N+2∏
i=1

si

)
. (A.6)

The Theta function is defined as follows:

θp (x) ≡ (x; p)∞
(
x−1p; p

)
∞ , (A.7)

where (z; p)∞ is the usual q-Pochhammer symbol defined as follows:

(x; p)∞ =

∞∏
k=0

(
1− xpk

)
. (A.8)

Following properties of theta function will be useful to us

θp (x) =
Γe (qx)

Γe (x)
, θp

(
x−1

)
= −x−1θp (x) , θp (xp

m) = (−1)mx−mp−
1
2
m(m−1)θp (x) ,

Γe

(
pLqKx

)
Γe (x)

=
K−1∏
j=0

θp
(
qjx
) L−1∏
j=0

θq
(
qKpjx

)
(A.9)

We will also use the following duality identity from [43]:

V (t) =
8∏

1≤j<k≤4

Γe (tjtk) Γe (tj+4tk+4)V (s) , (A.10)

where

V (t) ≡ κ

∮
dz

2πiz

8∏
j=1

Γe

(
tjz

±1
)

Γe (z±2)
,

8∏
j=1

ti = pq , |tj |, |sj | < 1 .

sj = ρ−1tj , j = 1, 2, 3, 4; sj = ρtj , j = 5, 6, 7, 8; ρ ≡
√

t1t2t3t4
pq

(A.11)
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B Derivation of higher tower AN operators

In this appendix we will give details of the derivation of AN A∆Os that we summarize in

Section 2. We start with the four-punctured sphere theory whose quiver is shown in Figure

1. This theory and its superconformal index were derived in [19]. The index is given by the

following expression:

K4(x, x̃, z, z̃) = κN+2

∮ N+2∏
i=1

dti
2πiti

N+3∏
i ̸=j

1

Γe

(
ti
tj

) ×

N+3∏
i=1

N+1∏
j=1

2N+4∏
k=1

Γe

(
(pq)

1
N+3

(
u−1w

)4N+2
N+3 x−1

j ti

)
Γe

(
(pq)

1
N+3

(
uw−1

)2 (N+2)(N+1)
N+3 z±1ti

)

Γe

(
(pq)

N+1
2(N+3)u−

(N+1)2

N+3 vN+1w−2N+1
N+3a−1

k t−1
i

)
Γe

(
(pq)

1
2uN+3v−N−1w−2akxj

)
×

Γe

(
(pq)

N+1
2(N+3)u−2

(N+1)(N+2)
N+3 v−2(N+1)(N+2)w−4N+2

N+3 t−1
i

)
×

Γe

(
(pq)

1
2u2N+4v2(N+1)(N+2)xj

)
Γe

(
(pq)

1
2
(
uvw−2

)−N−1
alz

±1
)
×

Γe

(
(pq)

1
2 v2(N+1)(N+2)w2N+4z±1

)
Γe

(
(pq)

N+1
2(N+3)u2

(N+1)(N+2)2

N+3 w4
(N+2)2

N+3 t−1
i

)
×

Γe

(
(pq)

1
2u−2N(N+2)w−4N−8x̃j

)
Γe

(
(pq)

1
2u−2(N+1)(N+2)w−2N−4z̃±1

)
×

Γe

(
(pq)

1
N+3

(
u−1w

)4N+2
N+3 tix̃

−1
j

)
Γe

(
(pq)

1
N+3

(
uw−1

)2 (N+1)(N+2)
N+3 tiz̃

±1

)
.(B.1)

This is an index of an SU(N +3) SQCD with 2N +6 flavors and a superpotential. Variables

x, x̃, z, z̃ are fugacities of the global symmetry of two maximal SU(N +1)x,x̃ and two minimal

SU(2)z,z̃ punctures correspondingly.

We close the two SU(2) punctures by setting z and z̃ to the values in (2.7). Performing

calculations for general values of the charges is complicated. So we will perform here the

calculation only for one of the charges fixing h̃i = h̃2N+6 =
(
uNw2

)−2N−4
. Corresponding

positions of the poles are then given by

z = (pq)−
1
2
(
wuN+1

)−2N−4
q−Mp−L, z̃ = (pq)−

1
2
(
wuN+1

)2N+4
q−M̃p−L̃ . (B.2)

Also as discussed in Section 2 we will further consider L̃ = M̃ = 0.

The pole in z̃ is an explicit simple pole so we can just take the residue. The pole in z

however, is due to contour pinching. To see this clearly, it is useful to first perform a Seiberg

duality leading to an index of SU(N +2) gauge thoery with 2N +5 flavors, with the followng
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index,

KAN

(2;2N+6;L,M) (x, x̃) = κN+1

∮ N+1∏
i=1

dti
2πiti

N+2∏
i ̸=j

1

Γe

(
ti
tj

) ×

N+2∏
i=1

N+1∏
j=1

2N+4∏
k=1

Γe

(
(pq)

1
2(N+2)u2N+4xjti

)
Γe

(
(pq)

1
2u−N−3vN+1w2a−1

k x̃−1
j

)
×

Γe

(
(pq)

1
2
(
uvN+1

)−2N−4
x̃−1

)
Γe

(
(pq)

1
2(N+2)u2N+4x̃jti

)
×

Γe

(
(pq)

N+3
2N+4u(2N+4)(N+1)w4N+8tiq

MpL
)
Γe

(
(pq)−

N+1
2N+4u−(2N+4)(N+1)tiq

−Mp−L
)
×

Γe

(
(pq)

N+3
2(N+2)u−2(N+1)(N+2)ti

)
Γe

(
(pq)

N+1
2(N+2) (uv)−N−1w−2akt

−1
i

)
×

Γe

(
(pq)

N+1
2(N+2) v2(N+1)(N+2)t−1

i

)
Γe

(
(pq)

1
2
(
uNw2

)−2N−4
x̃j

)
(B.3)

where we have already dropped irrelevant overall factors and substituted values of z from

(B.2). The subscript of the index as usually contains all the information of the underlying

theory. In particular 2 stands for the number of punctures. Index 2N+6 stands for the index

of the moment map we give vev to in order to close the puncture (moment map of charge

h̃2N+6h̃
− 1

4 in this case). Finally (L,M) denotes derivative powers in the vev and are the same

as L and M integers in (B.2). As can be seen from the expression above the contour pinching

is due to collision of poles at the following values:

ti = (pq)
− 1

2(N+2)u−2(N+2)x−1
i q−mip−li , tN+2 = (pq)

N+1
2(N+2)u2(N+1)(N+2)qM−mN+2pL−lN+2 ,

or

ti = (pq)
− 1

2(N+2)u−2(N+2)x̃−1
i q−mip−li , tN+2 = (pq)

N+1
2(N+2)u2(N+1)(N+2)qM−mN+2pL−lN+2 ,

(B.4)

where mi and li are partitions of M and L respectively. There are (N +2)! such poles coming

from permutations of ti but they all give the same result and we are ignoring overall factors.

It can be checked that the two lines in (B.4) give the same result so we will consider only the

first set of poles. After computing the residue we get the following expression for particular
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partitions l⃗, m⃗,

KAN

(2;2N+6;m⃗,⃗l)
(x, x̃) = Γe (pq)

N+2∏
j=1

∏M−mN+2

n=1 θp (q
−n)

∏L−lN+2

n=1 θq
(
qmN+2−Mp−n

)∏mj

n=1 θp
(
q−np−lj

)∏lj
n=1 θq (p

−n)

N+1∏
i=1

2N+4∏
k=1

N+1∏
j ̸=i

Γe

(
x̃i
xi
q−mip−li

) Γe

(
(pq)

1
2u2(N+2)2qM−mN+2pL−lN+2xi

)
Γe

(
(pq)

1
2u2(N+2)2qM+mi−mN+2pL+li−lN+2xi

) ×

Γe

(
(pq)−

1
2u−2(N+2)2x−1

i q−M−mip−L−li
)

Γe

(
(pq)−

1
2u−2(N+2)2x−1

i qmN+2−M−miplN+2−L−li

)Γe

(
x̃j
xi

q−mip−li

)
×

Γe

(
(pq)

1
2uN+3v−N−1w−2akxiq

mipli
)
Γe

(
(pq)

1
2
(
uNw2

)2N+4
x−1
i qM−mipL−li

)
×

Γe

(
(pq)

1
2u−2(N+2)2x−1

i q−mip−li
)
Γe

(
(pq)

1
2
(
uvN+1

)2N+4
xiq

mipli
)
×

Γe

(
(pq)

1
2u−N−3vN+1w2a−1

k x̃−1
i

)
Γe

(
qmN+2−MplN+2−L

(
vu−1

)2(N+1)(N+2)
)
×

Γe

(
xj

xi
q−mip−li

)
Γe

(
xj

xi
qmj−miplj−li

)Γe

(
(pq)

1
2u2(N+2)2qM−mN+2pL−lN+2 x̃i

)
×

Γe

(
(pq)

1
2
(
uNw2

)−2N−4
x̃i

)
Γe

(
pq
(
uN+1w

)4N+8
q2M−mN+2p2L−lN+2

)
×

Γe

(
(pq)

1
2
(
uvN+1

)−2N−4
x̃−1
i

)
Γe

((
u2N+5v

)−N−1
w−2akq

mN+2−MplN+2−L
)
. (B.5)

To get the A∆O acting on SU(N + 1)x puncture, we should S glue this tube to the index of

an arbitrary theory I(x̃) with SU(N + 1)x̃ puncture and sum over all partitions,

I1(x) = κN
∑

{mi},{li}

∮ N∏
i=1

dx̃i
2πix̃i

N+1∏
i ̸=j

1

Γe

(
x̃i
x̃j

)KAN

(2;2N+6;m⃗,⃗l)
(x̃, x)I0(x̃) , (B.6)

Note that there is a zero in (B.5) coming from Γe (pq) but this is canceled against the pinching

of x̃ at the following values,

x̃i = xiq
mi−sipli−ri ,

N+1∑
i=1

si = M −mN+2 ,
N+1∑
i=1

ri = L− lN+2, (B.7)

up to permutations of xi which give the same result due to the Weyl symmetry of AN root

system. If we specify x̃i to the values written above we obtain double pole due to the

contour pinching of (B.6) but as we mentioned one of them is cancelled by the zero of Γe (pq).

Computing the residue of the remaining pole we obtain the following contribution of each
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individual partition:

Im,l,s,r
1 (x) =

N+1∏
i=1

N+2∏
n=1

2N+4∏
k=1

N+1∏
j ̸=i

Γe

(
(pq)

1
2u2(N+2)2qM−mN+2pL−lN+2xi

)
Γe

(
(pq)

1
2u2(N+2)2qM+mi−mN+2pL+li−lN+2xi

) ×

∏M−mN+2

n=1 θp (q
−n)

∏L−lN+2

n=1 θq
(
qmN+2−Mp−n

)∏mj

n=1 θp
(
q−np−lj

)∏lj
n=1 θq (p

−n)
∏si

n=1 θp (q
−np−ri)

∏ri
n=1 θq (p

−n)
×

Γe

(
(pq)−

1
2u−2(N+2)2x−1

i q−M−mip−L−li
)

Γe

(
(pq)−

1
2u−2(N+2)2x−1

i qmN+2−M−miplN+2−L−li

)Γe

(
xj
xi

qmj−sj−miplj−rj−li

)
×

Γe

(
(pq)

1
2uN+3v−N−1w−2akxiq

mipli
)
Γe

(
(pq)

1
2
(
uNw2

)2N+4
x−1
i qM−mipL−li

)
×

Γe

(
(pq)

1
2u−2(N+2)2x−1

i q−mip−li
)
Γe

(
(pq)

1
2u−N−3vN+1w2a−1

k x−1
i qsi−mipri−li

)
×

Γe

(
(pq)

1
2
(
uvN+1

)−2N−4
x−1
i qsi−mipri−li

) Γe

(
xj

xi
q−mip−li

)
Γe

(
xj

xi
qmj−miplj−li

) ×

Γe

(
(pq)

1
2

(
uNw2

)−2N−4
xiq

mi−sipli−ri
)

Γe

(
qmi−mj+sj−sipli−lj+rj−rixi/xj

) Γe

(
(pq)

1
2
(
uvN+1

)2N+4
xiq

mipli
)
×

Γe

(
pq
(
uN+1w

)4N+8
q2M−mN+2p2L−lN+2

)
×

Γe

(
qmN+2−MplN+2−L

(
vu−1

)2(N+1)(N+2)
)
×

Γe

(
(pq)

1
2u2(N+2)2qM−mN+2+mi−sipL−lN+2+li−rixi

)
×

Γe

((
u2N+5v

)−N−1
w−2akq

mN+2−MplN+2−L
)
I0(qmi−sipli−rixi) .

(B.8)

Summing over all partitions and using properties of Γ and θ functions (A.9) we get the

difference operator given in (2.10) with the h̃k = h̃10. Operators obtained using another ways

to close minimal punctures can be derived in absolutely identical manner and lead to the

same A∆O (2.10).

C Derivation of C2 operator

In this section we give details of the derivations of results summarized in Section 3 and show

in all details how to derive C2 type generalization of the van Diejen model.

Let’s start with the derivation of the trinion that has one maximal USp(2N) puncture,

one maximal SU(N + 1) puncture and one minimal SU(2) puncture. It is important since it

will be later used by us to derive four punctured sphere with two maximal USp(2N) and two

minimal SU(2) punctures as specified in (3.7).

To obtain this kind of three punctured sphere theory we start with the trinion T A
x,y,z with

two maximal SU(N + 1)x,y and one minimal SU(2)z punctures. This trinion was derived in
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[21] and is shown on the Figure 1. Corresponding superconformal index is given by:

KA
3 (x, y, z) = κN+1

∮ N+1∏
i=1

dti
2πiti

N+2∏
i ̸=j

1

Γe

(
ti
tj

) N+2∏
i=1

N+1∏
j=1

Γe

(
(pq)

1
2(N+2)u2N+4tixj

)
×

Γe

(
(pq)

1
2(N+2) v2N+4tiyj

)
Γe

(
(pq)

1
2(N+2)w2N+4tiz

±1
)
×

2N+4∏
l=1

Γe

(
(pq)

N+1
2(N+2) (uv)−N−1w−2t−1

i al

)
, (C.1)

where u, v, w and ai parametrize Cartans of the 6d SO(4N +8) global symmetry. SU(N +2)

gauge symmetry is parametrized by ti’s with the relation

N+2∏
i=1

ti = 1 . (C.2)

Global SU(N + 1) symmetries of the maximal punctures are parametrized by xi and yi
satisfying

N+1∏
j=1

xj =

N+1∏
j=1

yj = 1 . (C.3)

Each puncture has (2N + 6) moment map operators with the charges specified in (2.1).

Now in order to obtain desired trinion we should turn one of the SU(N + 1) punctures

into USp(2N) type puncture. For this purpose we use an ANCN tube theory introduced

in [24] and shown in Figure 2(a). Chirals of these theory correspond to the moment maps

of punctures. For USp(2N) puncture these are just moment maps specified in (3.1). For

SU(N +1) puncture as specified in (2.1) but with the last moment map flipped so that all of

them transform in the same fundamental representation of SU(N + 1):

Mu = N+ 1x ⊗
(
2N+ 4uN+3v−N−1w−2 ⊕ 1

(uvN+1)2N+4 ⊕ 1
(uNw2)−2N−4

)
(C.4)

The index of this tube theory is given by:

KAC
2 (x, x̃) =

N+1∏
i=1

N∏
j=1

2N+4∏
l=1

Γe

((
u−1w

)2N+4
x̃−1
i x±1

j

)
Γe

(
(pq)

1
2uN+3v−N−1w−2alx̃i

)
×

Γe

(
(pq)

1
2
(
uvN+1

)2N+4
x̃i

)
Γe

(
(pq)

1
2
(
uNw2

)−2N−4
x̃i

)
×

Γe

(
(pq)

1
2
(
uvw−2

)N+1
a−1
l x±1

j

)
Γe

(
(pq)

1
2
(
vN+1w

)−2N−4
x±1
j

)
×

Γe

(
(pq)

1
2
(
uN+1w

)2N+4
x±1
j

)N+1∏
i<j

Γe

(
pq
(
uw−1

)4(N+2)
x̃ix̃j

)
,

(C.5)
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2N N+3N+1

0q

t

2
N+3Q

t−
2

N+3

A

W ∼ q2A

2N N+3

M = qQ

B = QN+1
W ∼ M2B

Figure 8. Spiridonov-Warnaar-Vartanov (SWV) duality. On the picture we also specify superpoten-

tials, UV on the left and dynamically generated on the right sides of dualitites. The solid line starting

and ending on the same node denotes multiplet in rank-two antisymmetric representation (AS).

Now we take this theory and glue it along the SU(N + 1) puncture to the AN trinion

shown in Figure 1. Consistent gluing in this case is the mixture of Φ and S gluings. In

particular we Φ glue all moment maps except 1
(uNw2)2N+4 which is S glued. At the level of

the index this operation corresponds to

KAC
3 (x, y, z) = κN

∮ N∏
i=1

dx̃i
2πix̃i

N+1∏
i ̸=j

1

Γe

(
x̃i
x̃j

)KA
3 (x̃, y, z)K

AC
2 (x̃, x)×

N+1∏
i=1

2N+4∏
l=1

Γe

(
(pq)

1
2u−N−3vN+1w2a−1

l x̃−1
i

)
Γe

(
(pq)

1
2
(
uvN+1

)−2N−4
x̃−1
i

)
(C.6)

Substituting expressions (C.1) for AN trinion and (C.5) for the ANCN tube we immediately

see that the SU(N + 1)x̃ gauge theory appears to be S-confining. Corresponding S-confining

theory is depicted in Figure 8. This duality was first introduced by Spiridonov and Warnaar

[44] as a mathematical identity for superconformal indices of the corresponding theories:

κN

∮ N∏
i=1

dx̃i
2πix̃i

N+1∏
i ̸=j

1

Γe

(
x̃i
x̃j

) N+1∏
i<j

Γe

(
Sx̃−1

i x̃−1
j

)N+1∏
j=1

N∏
k=1

Γe (x̃jtk) Γe

(
pqS−1t−1

k x̃j
)
×

N+3∏
m=1

Γe

(
smx̃−1

j

)
=

N∏
k=1

N+3∏
m=1

Γe (tksm)

Γe

(
Stks

−1
m

) N+3∏
l<m

Γe

(
Ss−1

l s−1
m

)
,(C.7)

where S =
N+3∏
i=1

si. Later Spiridonov and Vartanov [45] discussed physical implications of

the relation written above. We refer to this duality as Spiridonov-Warnaar-Vartanov (SWV)

duality. More detailed discussion about it can also been found in the Appendix B.5 of our

previous paper [19]. Using this duality for the SU(N +1)x̃ node in (C.6) we can finally write
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N+ 2N+ 1 2N

2N+ 5

2

xy

z

w2N+4

1
N+2

v2N+4

1
N+2

w2N+4 1
N+2

(
v−N−1w2

) 2N+4
2N+5

N+1
N+2

w−4N−8

2N+1
N+2

Figure 9. Trinion theory with USp(2N)x maximal puncture (light orange), SU(N + 1)y maximal

puncture (green) and SU(2)z minimal puncture (orange). U(1) global symmetries are parametrized

using the parametrization (3.3) more natural for the SU(N + 1) type punctures. The index of the

theory is given in (C.8).

down the index of the desired three-punctured sphere as follows:

KAC
3 (x, y, z) = κN+1

∮ N+1∏
i=1

dti
2πiti

N+2∏
i ̸=j

1

Γe

(
ti
tj

) N∏
k=1

N+2∏
i=1

N+1∏
j=1

Γe

(
(pq)

1
2(N+2)w2N+4x±1

k ti

)
×

Γe

(
(pq)

N+1
2(N+2)u2(N+1)(N+2)t−1

i

)
Γe

(
(pq)

1
2(N+2) v2N+4yjti

)
Γe

(
(pq)

1
2(N+2)w2N+4tiz

±1
)
×

2N+4∏
l=1

Γe

(
(pq)

N+1
2(N+2) (uv)−N−1w−2t−1

i al

)N+2∏
i<j

Γe

(
(pq)

N+1
N+2w−4N−8t−1

i t−1
j

)
, (C.8)

where we have omitted some of the USp(2N) singlets thus redefining type of the puncture.

Corresponding trinion theory is shown in Figure 9.

Now we can use this ANCN type trinion theory in order to derive four-punctured sphere

theory with two USp(2N) maximal punctures. For this purpose we S glue two copies of this

trinion along AN type puncture. At the level of the index this corresponds to the operation

specified in (3.7). Substituting trinion index (C.8) into this expression we obtain the following
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four-punctured sphere index:

K4(x, x̃, z, z̃) ≡ κN

∮ N∏
i=1

dy

2πix

∏
i ̸=j

1

Γe (yi/yj)
KAC

3 (x, y, z)K̄AC
3 (x̃, y, z̃) =

κ2N+1κN

∮ N+1∏
i=1

dti
2πiti

dt̃i

2πit̃i

N∏
i=1

dyi
2πiyi

N+2∏
i=1

1

Γe (ti/tj) Γe

(
t̃i/t̃j

) N+1∏
i=1

1

Γe (yi/yj)
×

N+2∏
i=1

N+1∏
j=1

N∏
k=1

2N+4∏
l=1

Γe

(
(pq)

1
2N+4w2N+4x±1

k ti

)
Γe

(
(pq)

N+1
2N+4u2(N+1)(N+2)t−1

i

)
×

Γe

(
(pq)

1
2N+4 v2N+4yjti

)
Γe

(
(pq)

1
2N+4w2N+4tiz

±1
)
Γe

(
(pq)

1
2N+4w−2N−4x̃±1

k t̃−1
i

)
×

Γe

(
(pq)

N+1
2N+4 (uv)−N−1w−2t−1

i al

)
Γe

(
(pq)

N+1
2N+4 (uv)N+1w2t̃ia

−1
l

)
×

Γe

(
(pq)

N+1
2N+4u2(N+1)(N+2)t̃i

)
Γe

(
(pq)

1
2N+4 v−2N−4y−1

j t̃−1
i

)
×

Γe

(
(pq)

1
2N+4w−2N−4t̃−1

i z̃±1
)N+2∏

i<j

Γe

(
(pq)

N+1
N+2w−4N−8t−1

i t−1
j

)
Γe

(
(pq)

N+1
N+2w4N+8t̃it̃j

)
(C.9)

Now if we look on the SU(N +1)y gauged node we see that it corresponds to the theory with

N + 2 hypermmultiplets, meaning the node is S-confining and can be integrated out using

the standard Seiberg duality. Performing this simple operation we land on the theory shown

on the Figure 10 with the following superconformal index:

KC
4 (x, x̃, z, z̃) = κ2N+1

∮ N+1∏
i=1

dti
2πiti

dt̃i

2πit̃i

N+2∏
i ̸=j

1

Γe (ti/tj) Γe

(
t̃i/t̃j

)×
N+2∏
i=1

N∏
k=1

2N+6∏
l=1

Γe

(
(pq)

1
2N+4w2N+4x±1

k ti

)
Γe

(
(pq)

N+1
2N+4w−2N+2

N+3 ãlt
−1
i

)
×

Γe

(
(pq)

1
2N+4w−2N−4x̃±1
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(
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) N+2∏
i,j=1
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(
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1
N+2 tit̃

−1
j

)
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(
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1
2N+4w2N+4tiz
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×
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(
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j
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(
(pq)

N+1
N+2w4N+8t̃it̃j

)
, (C.10)

where we have also used dictionary (3.4) in order to express everything in terms of CN

parametrzation (3.2) since now we have only this type of maximal punctures and hence latter

parametrization is more natural.

Now we finally close one of the two SU(2) minimal punctures without introducing the

defect. As discussed in Section 3 this amounts to computing the residue of (C.10) at the

point z̃ = (pq)−
1
2w2

(N+2)2

N+3 ãi. Indeed it can be seen that at this value of z̃ there is pole coming
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Figure 10. Four-punctured sphere theory with two maximal USp(2N) and two minimal SU(2) punc-

tures. The four-punctured sphere is derived by gluing two trinion theories shown on the Figure 9 and

performing some duality transformations specified in the text.

from the contour pinching at

t̃N+2 = (pq)−
N+1
2N+4w−2N+2

N+3 ãi , (C.11)

where t̃N+2 variable is chosen without loss of generality. In fact we should compute such

pinchings for each t̃i variables and sum the results. But due to the Weyl symmetry of the

SU(N + 1) root system all such contributions are the same and summing them results in

an overall factor of (N + 1)!. We omit such overall factors since they are irrelevant for the

structure of the A∆O we get in the end. Computation of the corresponding residue at the

pinching point leads to the following expression for the three-punctured sphere theory index:

KC
(3;i;0)(x, x̃, z) = κN+1κN

∮ N+1∏
j=1

dtj
2πitj

N∏
j=1

dt̃j

2πit̃j

N+2∏
k ̸=j

1

Γe (tk/tj)

N+1∏
i ̸=j

1

Γe

(
t̃k/t̃j

)×
N+2∏
m=1

N+1∏
j=1

N∏
k=1

2N+6∏
l ̸=i

Γe

(
(pq)

1
2N+4w2N+4x±1

k tm

)
Γe

(
(pq)

N+1
2N+4w−2N+2

N+3 ãlt
−1
m

)
×

Γe

(
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1
2N+4w2N+4tmz±1

)
Γe

(
w

−2
(N+2)3

(N+1)(N+3) ã
1

N+1

i x̃±1
k t̃−1

j

)
Γe

(
(pq)

1
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(N+2)2

N+3 ã−1
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×
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(
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(N+1)(N+3) ã−1
l ã

− 1
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)
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(
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1
2N+4w

−2 N+2
(N+1)(N+3) ã

1
N+1

i ti/t̃j

)
×

N+2∏
i=m<j
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(
(pq)

N+1
N+2w−4N−8t−1

m t−1
j
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Γe

(
pqw

4
(N+2)3

(N+1)(N+3) ã
− 2

N+1

i t̃mt̃j

)
. (C.12)

Corresponding quiver diagram is shown in Figure 3.

In case N = 1 it can be shown that the theory we derived reduces to the one shown in

Figure 22 (b) in our previous paper [19]. There we used it to derive C1 A∆O which appeared

to be van Diejen operator. Studying general N case appears to be too complicated since there
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is no clear way to further simplify theory (C.12). Instead we concentrate here on C2 case.

When N = 2 AS representation of SU(N +1) node becomes anti-fundamental representation

and the index of the theory reads:

KC
(3;i,0)(x, x̃, z) = κ3κ2

∮ 3∏
m=1

dtm
2πitm

2∏
i=1

dt̃m

2πit̃m

4∏
m̸=j

1

Γe (tm/tj)

3∏
m ̸=j

1

Γe

(
t̃m/t̃j

)×
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3∏
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2∏
k=1

10∏
l ̸=i

Γe

(
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1
8w8x±1

k tm

)
Γe

(
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3
8w− 8

5 ãlt
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)
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(
(pq)

1
8w8tmz±1

)
×
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w− 128

15 ã
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3
i x̃

±1
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j
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(
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2w− 32

5 ã−1
i x̃±1

k
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(
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1
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5 ã−1

l ã
− 1

3
i t̃j

)
×

Γe

(
(pq)

1
8w− 8

15 ã
1
3
i tm/t̃j

)
Γe

(
pqw

256
15 ã

− 2
3

i t̃−1
j

)N+2∏
m<j

Γe

(
(pq)

3
4w−16t−1

m t−1
j

)
, (C.13)

with the corresponding quiver of the theory shown in Figure 11 (a).

At the next step we perform Seiberg duality on the SU(3) gauge node of the theory above.

This node has 9 falvors so after dualising it we obtain SU(6) node with the superconformal

index of the resulting theory given by

KC
(3;i,0)(x, x̃, z) = κ3κ5

∮ 3∏
m=1

dtm
2πitm

5∏
m=1

dt̃m

2πit̃m

4∏
m ̸=j

1

Γe (tm/tj)

6∏
m̸=j

1

Γe

(
t̃m/t̃j

) ×
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10∏
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8w8tmz±1

)
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)
Γe

(
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15 ãl t̃j

)
Γe

(
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1
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3 x̃±1

k t̃−1
j

)
×

Γe

(
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3
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15 ãit̃
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)
Γe

(
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m t̃−1
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) 4∏
m<n

Γe

(
(pq)

3
4w−16t−1

m t−1
n

)
, (C.14)

and corresponding quiver is shown in Figure 11 (b). We see that SU(4) gauge node of this

theory appears to be S-confining due to SWV duality. Hence using SWV index identity (C.7)

we arrive to the gauge theory with the following superconformal index:

KC
(3;i,0)(x, x̃, z) = κ5

∮ 5∏
i=1

dt̃i

2πit̃i

6∏
i ̸=j

1

Γe

(
t̃i/t̃j

) 6∏
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(
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×
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(
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(
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(
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)
, (C.15)
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Figure 11. Chain of duality transformations of three-punctured sphere theory in C2 case. We start

with the theory derived by gluing two three-punctured sphere theories T AC along A-type puncture,

integrating out A2 node and closing SU(2)z̃ minimal puncture. This theory is shown on the Figure

(a) above and corresponding index is given by (C.13). Then performing Seiberg duality on the right

node of this theory we obtain the quiver shown on the Figure (b). Finally we notice that right SU(4)

gauge node of theory (b) is confining due to SWV duality. Integrating it out we obtain theory shown

in the Figure (c).

with the quiver shown in Figure 11 (c). Now we are ready to close second minimal puncture

leaving us with the sphere with only two maximal USp(2N) punctures left. As discussed in

the Section 3 for this purpose we fix z fugacity to be

z = Z∗
i;K,0 = (pq)−

1
2w− 32

5 a−1
i q−K . (C.16)

Carefully studying expression (C.15) we see that at this value of z superconformal index

indeed has pole coming from the contour pinching at:

t̃1,2 = (pq)
1
4w

16
3 y±1

1 qk1,± , t̃3,4 = (pq)
1
4w

16
3 y±1

1 qk2,± ,

t̃5 = (pq)−
1
4w− 16

5 a−1
i qk5−K , t̃6 = (pq)−

3
4w− 304

15 aiq
k6 , (C.17)

where {k1,±, k2,±, k5, k6} ≡ K⃗ is partition of the integer K. Of course any permutation of

(C.17) would also result in the same contour pinching and hence the pole of the superconformal

index. Due to the Weyl group symmetry contributions of all these permutations into our

operator is the same and taking them into account just results in an overall factor which
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we omit. Substituting values (C.17) into three punctured sphere index (C.15) we get the

following result for the index of the two-punctured sphere:

K(2;i;K,0)(x, x̃) =
∑
K⃗

C(K⃗;i)

2∏
j=1

10∏
l ̸=i
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) Γe
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32
5 ãix
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)
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5 ãix
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)±1
) Γe

(
p−1q−1w− 128

5 ãix
±1
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)
Γe

((
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i x±1
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(
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)
×
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(
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)
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(
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1
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(
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)
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(
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1
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(
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j

)
×
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(
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j

) 2∏
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(
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)
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(
x̃±1
k x−1

j q−kj,+
)
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(
pq1+k1,++k1,−

)
×

Γe

(
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5 ã−1

i x±1
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1 x±1
2 qk1,−+k2,±

)
Γe

(
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)
, (C.18)

where C(K⃗;i) is the following constant:

C(K⃗;i) =
10∏
l ̸=i

Γe

(
(pq)

3
2w32qK−k6

)
Γe

(
ãlã

−1
i qk5−K

)
Γe

(
(pq)−

1
2w− 96

5 ãlãiq
k6
)
×

Γe

(
(pq)−

1
2w− 96

5 ã2i q
K−k5

)
Γe

(
(pq)

1
2w

96
5 ã−2

i q−K−k6
)

Γe

(
(pq)

1
2w

96
5 ã−2

i q−K+k5−k6

)
Γe

(
(pq)−

1
2w− 96

5 ã2i q
K+k6−k5

)×
Γe

(
(pq)−

1
2w−32qk5+k6−K

)
Γe

(
pqw

64
5 ã2i q

2K−k5
)
, (C.19)

here subscript contains all the information on how the tube was obtained. Inside this subscript

2 means that we obtain two-punctured sphere (the tube) in the end. Index i stands for the

choice of the moment map we give vev to according to (3.8) and (3.10). Finally K denotes

the power of holomorphic derivative of the moment map we give vev to. Summation in (C.18)

goes over all possible partitions of K integer. Due to the presence of the defect this index

expression unlike our previous four- and three-punctured sphere does not have nice gauge

theory interpretation.

Now gluing tube (C.18) to an arbitrary N = 1 theory with one maximal USp(2N)

puncture we can obtain desired A∆O. At the level of the superconformal index the gluing is
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performed as specified in (3.13):

O(C2;hk;K,0)
x · I(x) = κN

2N

∮
dx̃1,2
2πix̃1,2

1

Γe

(
x̃±2
1,2

)
Γe

(
x̃±1
1 x̃±1

2

)KC
(2;i;K,0)(x, x̃)I(x̃) (C.20)

Notice that expression (C.18) for the tube index has zeroes coming from the last two Γ-

functions. Due to these zeroes only the poles of the integral in (C.20) coming from other Γ

functions will contribute to the final expression. In particular these poles are coming from

the Γe

(
x̃±1
k xjq

−kj,−
)
and Γe

(
x̃±1
k x−1

j q−kj,+
)
terms and are located at

x̃i =
(
xσ(i)q

−mi
)±1

, −kσ(i),+ ≤ mi ≤ kσ(i),− . (C.21)

where σ(i) is permutation of i. In the end we should sum over such permutations as well

as over all combinations of ±1 powers in the expression above. Since the tube expression

(C.18) is symmetric w.r.t. permutations of x̃1 ↔ x̃2 and x̃i → x̃−1
i every contribution of the

pinchings specified above is the same and summation just gives an irrelevant overall factor.

So for simplicity we can consider only one of the combinations

x̃i = xiq
−mi , −ki,+ ≤ mi ≤ ki,− . (C.22)

The condition on mi comes from the fact that both types of specified Γ functions should have

poles. Half of these terms should lead to integration contour pinching in (C.20) while other

half will cancel zeroes coming from the last two Γ functions in the tube index expression

(C.18).

Now computing the contribution of pinchings (C.22) into gluing (C.20) and using Γ

functions identity (A.9) we can directly obtain the full tower of operators (3.14).

D Proof of the kernel property of A2C2 tube theory

Here we give a proof of the kernel property (4.2) where we act with A2 operator (2.13) and

C2 operator (3.17) on the index (C.5) of the tube with SU(3) and USp(4) maximal punctures.

Let’s start the proof of the kernel property by explicitly calculating action of our A∆Os

on the tube index and write two sides of the equation in terms of algebraic expressions. First

of all we should fix the parametrization of the Cartans of global 6d symmetry. For this it

will be more convenient to use C2 parametrization given in (3.2). We should also use the

dictionary (3.4) between A2 and C2 parametrizations in order to rewrite everything in terms

of the latter one. Fixing N = 2 in the tube index (C.5) and writing everything in terms of

C2 parametrization we obtain:

KA2C2
2 (x, y) =

3∏
i=1

2∏
j=1

9∏
l=1

Γe
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w
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15 ã
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15 ã
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10ãlyi
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15 ã
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10 yi
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(
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5 ã10x

±1
j

)
Γe

(
pqw− 256

15 ã
2
3
10y

−1
i

)
, (D.1)
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where as previously x1,2 are fugacities for the global symmetry of the USp(4) puncture, while

y1,2,3 are fugacities of the SU(3) puncture. Latter ones are as usually constrained by the

identity
∏3

i=1 yi = 1.

Now we can start with the r.h.s. of (4.2) describing the action of C2 operator. Main

ingredient we need to find the action of the full operator is the action of the shift ∆q(xi) on

the tube index. Studying this action on (D.1) we obtain:

∆q(xl)K
A2C2
2 (x, y) = Dl(x, y)K

A2C2
2 (x, y) , (D.2)

where the function Dl(x, y) is given by:

Dl(x, y) =
3∏

i=1

θp
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− 1
3

10 w
128
15 x−1

l y−1
i

) (D.3)

Then on the r.h.s. of (4.2) we obtain:

O(C2;h10;1,0)
x KA2C2

2 (x, y) =
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(
xi → x−1

i

))
=

2∑
i=1

 2∏
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5 ã10xi

)
θp

(
(pq)

1
2w

32
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) . (D.4)

Now we consider l.h.s. of the equation above. Similarly we need to understand action of

∆lm(y) operator on the A2C2 tube (4.2):

∆lm(y)KA2C2
2 (x, y) = Dlm(x, y)KA2C2

2 (x, y) , (D.5)

where
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So the l.h.s. of (4.2) takes the following form:
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[
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]
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Hence kernel property (4.2) can be reduced to the following algebraic identity:

F (A2;h̃10;1,0)(x, y) +W (A2;h̃
−1
10 ;1,0)(y) = F (C2;h10;1,0)(x, y) +W (C2;h10;1,0)(x) (D.8)

It can be checked that both F (A2;h̃10;1,0)(x, y) and F (C2;h10;1,0)(x, y) functions defined

above are elliptic w.r.t both xi and yi variables with periods 1 and p 6. In order to prove the

identity we now need to check poles and residues in the fundamental domain on two sides of

equation 7. We already know the poles and residues of the constant parts W (A2;h̃
−1
10 ;1,0)(y) and

W (C2;h10;1,0)(x) summarized in sections 2 and 3 correspondingly. Now let’s study functions

F (A2;h̃10;1,0)(x, y) and F (C2;h10;1,0)(x, y) coming from the action of the shift parts.

We start with F (A2;h̃10;1,0)(x, y) function given in (D.7). This elliptic function appears to

have poles at the following positions:

ya = w
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15 ã
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3

10 q−1xsb , ya = qyb , ya = q−1yb , ya = sq
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2
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1
2 p
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2 p
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a , xj =

(
w

128
15 ã
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3

10 q−1y−1
a

)±1

, (D.9)

where s = ± and Pa ≡
3∏

j ̸=a

yj . Seemingly there are more poles in expression (D.7) but checking

all residues shows that the only actual poles are the ones listed above.

6As usually when we discuss ellipticity w.r.t. A2 variables we should keep in mind the constraint so when

we shift one of the variables, say yl → pyl we are forced to also make another shift ym → p−1ym for some

other variable.
7We have complicated functions of many variables. Hence when we speak about poles and corresponding

residues we always consider our functions as functions of one chosen variable while all other variables are kept

fixed. The poles and residues should be checked in this way for all variables of functions one by one.
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Residues of poles (D.9) are given by
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Resya=qybF
(A2;h̃10;1,0)(x, y) =
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Resya=q−1ybF
(A2;h̃10;1,0)(x, y) = − q−1yb
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Res
ya=sq

1
2 p

1
2 P

− 1
2

a

F (A2;h̃10;1,0)(x, y) = s
p

3
2 q

1
2P

1
2
a w

256
15 ã
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− 2

3
10 P

− 1
2

a

) θp

(
(pq)

1
2w

224
15 ã
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Looking on these residues we immediately see that on the l.h.s. of (D.8) there are vast

cancellation of residues between F (A2;h̃10;1,0)(x, y) and constant part W (A2;h̃
−1
10 ;1,0)(y). Latter

ones can be found from (2.18) upon charges identification given in (3.4). In particular the poles

at ya = qyb , ya = q−1yb , ya = sq
1
2P

− 1
2

a , ya = sq−
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2P

− 1
2

a , ya = sq
1
2 p
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a ,

get cancelled. Hence we are left with the following poles and residues on the l.h.s. of (D.8):
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− 2
3

10 ya

) θp

(
(pq)

1
2w− 224

15 ã
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(D.19)

Now let’s move to the C2 side of the kernel function equation (D.8). As mentioned

previously the function F (C2;h̃10;1,0)(x, y) defined in (D.4) is elliptic with periods 1 and p. In

the fundamental domain the poles of the function are located at

ya = w
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15 ã
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10 q−1xsb , xi = sq±
1
2 , xi = sq±

1
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1
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,(D.20)
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where as usually s = ±1. The residues at the poles xi = sq±
1
2 and xi = sq±

1
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1
2 are given by
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5 ã10x

±1
j

)
θp

(
sq−

1
2x±1

j

) ,

Res
xi=sq−

1
2
F (C2;h10;1,0)(x, y) = −s

q−
1
2

10∏
k=1

θp

(
(pq)

1
2 sq−

1
2w− 32

5 ã−1
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(D.21)

It can be easily seen that these residues are cancelled by the corresponding residues (3.19)

of the constant part W (C2;h10;1,0). Hence C2 side of kernel function equation (D.8) does not

have poles in xi = sq±
1
2 and xi = sq±

1
2 p

1
2 . The only poles are the same as on the A2 side and

are located in ya = w
128
15 ã
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. Corresponding residues

of F (C2;h10;1,0) and hence of the full function F (C2;h10;1,0) +W (C2;h10;1,0) are given by
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− 1
3

10 q−1xsb
(p; p)2∞

×

2∏
j ̸=b

θp

(
(pq)

1
2w

32
5 ã10x
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As the next step we have to show that the residues in (D.22) and (D.23) coincide with

the residues (D.18) and (D.19) in order for the kernel identity (D.8) to work. Notice that

in both pairs (D.22),(D.23) and (D.18), (D.19) position of the poles are defined by a single

equation

w
128
15 ã

− 1
3

10 q−1xsby
−1
a = 1 (D.24)

The two residues in each of the pairs differ by the choice of the variables with respect to which

we compute this residue. It is either fixing xa variable and computing residue in ya variable

(like in (D.18) and (D.22)) or vice versa (like in (D.19) and (D.23)). Hence it is sufficient

to prove equality of residues only in one of the variables. It then authomatically works for

another variable since it is the very same pole. Let’s choose to study residues w.r.t. xb
8.

Also since all expressions are symmetric w.r.t. xi → x−1
i we can perform the check only for

one of the signs s. The other one will work automatically. So let’s perform the check only for

the residue at xa = w
128
15 ã

− 1
3

10 q−1y−1
b Subtracting residue (D.19) from the residue (D.23) we

can obtain the following equation:

Res
xa=w

128
15 ã

− 1
3

10 q−1y−1
b

[
F (C2;h10;1,0)(x, y) +W (C2;h10;1,0)(x)− F (A2,h̃10;1,0)(x, y)

−W (A2;h̃
−1
10 ;1,0)(y)

]
=

w
128
15 ã

− 1
3

10 y−1
b q−1

(p; p)2∞

3∏
l ̸=b

θp

(
w

256
15 ã

− 2
3

10 q−1yl

)
θp

(
yb
yl

) θp

(
(pq)

1
2w

224
15 ã

2
3
10yb

)
θp

(
w

256
15 ã

− 2
3

10 q−2y−2
b

)×

2∏
j ̸=a

θp

(
(pq)

1
2w

32
5 ã10x

±1
j

)
θp

(
w

128
15 ã

− 1
3

10 q−1y−1
b x±1

j

) [1−Mab(x, y)] , (D.25)

8As a crosscheck we have also checked the residue w.r.t. ya
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where we have introduced an auxiliary function

Mab(x, y) =
3∑

l ̸=b

2∏
j ̸=a

θp

(
w

128
15 ã

− 1
3

10 y−1
l x±1

j

)
θp

(
(pq)

1
2w

32
5 ã10x

±1
j

)×
3∏

k ̸=l ̸=b

θp

(
(pq)

1
2w

224
15 ã

2
3
10y

−1
k

)
θp

(
(pq)

1
2w− 32

15 ã
4
3
10yk

)
θp

(
yk
yl

)
θp

(
w

256
15 ã

− 2
3

10 yb

) . (D.26)

It can be checked that this function is elliptic with periods 1 and p. Seemingly this function

has poles at xj =
[
(pq)

1
2w

32
5 ã10

]±1
, ya = yc with a, c ̸= b and yb = w− 256

15 ã
2
3
10. However as it

often happens in our calculations accurate derivation of the corresponding residues results in

zeros for all of them9. Hence these are not really poles and our function M(x, y) is an entire

function for all its variables. Since function is entire elliptic function we conclude that it is

just a constant.

In order to define which particular constant it is we just need to put in some values for

x and y variables. Here it is worth noticing that M(x, y) function is the sum of two products

of θ function. Without loss of generality let’s choose the following values of y variables:

yc = (pq)−
1
2w

32
15 ã

− 4
3

10 , yd = (pq)
1
2w− 32

15 ã
4
3
10y

−1
b , (D.27)

where the c and d indices are any indices not equal to b. The second equality, i.e. value

of yd follows from the first one and A2 constraint for yj variables. Now if we look on the

definition (D.26) of M(x, y) we see the sum of two terms. First term is when l = c , k = d

and the second term is vice versa when l = d , k = c. However we immediately see that if

yk = (pq)−
1
2w

32
15 ã

− 4
3

10 in (D.26) we obtain zero of theta function. Hence this second term in the

sum is automatically zero and that was the idea behind our choice (D.27). We are now left

only with the first term. Substituting chosen values into this term we see vast cancellations

leading to

Mab(x, y)|
yc=(pq)−

1
2w

32
15 ã

− 4
3

10

= 1 , (D.28)

and hence the Mab(x, y) function given in (D.26) is just 1, i.e. Mab(x, y) = 1. Notice that to

find the value of the constant Mab(x, y) we fixed only one of y variables. Other y’s as well as

all of x stayed random. Using our finding from (D.25) we immediately conclude that

Res
xa=w

128
15 ã

− 1
3

10 q−1y−1
b

[
F (C2;h10;1,0)(x, y) +W (C2;h10;1,0)(x)

]
=

Res
xa=w

128
15 ã

− 1
3

10 q−1y−1
b

[
F (A2;h̃10;1,0)(x, y) +W (A2;h̃

−1
10 ;1,0)(y)

]
. (D.29)

9To calculate these residues it is crucial to use the A2 constraint
3∏

j=1

yj = 1 for y variables.
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Now since both functions F (C2;h10;1,0)(x, y) + W (C2;h10;1,0)(x) and F (A2;h̃10;1,0)(x, y) +

W (A2;h̃
−1
10 ;1,0)(y) are elliptic with the coinciding poles and residues in the fundamental do-

main we conclude that they can differ at most by additive constant. And just as we did it

with Mab(x, y) function in order to find this constant we need to choose convenient values of

x and y variables. Here it is a bit harder to do then in the case of Mab function. However

first thing we can notice is that constant part W (C2;h10;1,0)(x) of C2 operator (3.17) has zero

at the following value of variables:

x1 = (pq)
1
2w

32
5 ã10 , (D.30)

where we have chosen x1 variable without loss of generality (it can as well be x2 variable)

and the other x2 variable is kept arbitrary. At the same time constant part W (A2;h̃
−1
10 ;1,0)(y)

of A2 operator given in (2.15) has zero at the following value of variables:

y1 = (pq)
1
2w

224
15 ã

2
3
10 , y2 = (pq)−

1
2w

32
15 ã

− 4
3

10 , y3 = w− 256
15 ã

2
3
10 . (D.31)

It is natural to try these values and check what happens with the shift parts F (A2;h̃10;1,0)(y) and

F (C2;h10;1,0)(x) on two sides of the kernel identity (D.8). On the C2 side it is straightforward

to see from (D.4) that simultaneous substitution of values specified in (D.31) and (D.30) leads

to zero of the shift part F (C2;h10;1,0)(x, y). With the A2 side it is a bit more tricky since the

shift part F (A2;h̃10;1,0)(x, y) seemingly has singularity at y3 = w− 256
15 ã

2
3
10 due to theta function

θp

(
w

256
15 ã

− 2
3

10

)
in the denominator of the expression. However accurate analysis shows that

this singularity is always cancelled by zeros of other theta functions standing in the numerator

of the expression. Taking this into account it is once again pretty easy to show that shift part

on A2 side of the kernel property also has zero at values (D.31) and (D.30).

Summarizing we have shown that expressions on two sides of the kernel property equation

(D.8) are elliptic functions with periods 1 and p and same sets of poles and residues in the

fundamental domain given in (D.18), (D.19), (D.22) and (D.23). This means that the two

functions differ at most by constant. To fix this constant we also notice that both function

on two sides of the equation have zero at the same values of variables given in (D.31) and

(D.30). Hence the constant two functions can differ by is just zero and the functions appears

to be the same. This concludes the proof of the kernel property (4.2).

E Commutators of C2 operators

In this appendix we discuss commutation relations (4.5) of the basic C2 operators (3.17).

Let’s start with checking the following commutation relation:[
O(C2;ha;1,0)

x , O(C2;hb;0,1)
x

]
= 0 , ∀ a, b = 1, . . . , 10 . (E.1)
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Using explicit expression (3.17) we can write out all the terms of the commutator:[
O(C2;ha;1,0)

x , O(C2;hb;0,1)
x

]
I(x) =

2∑
i,j=1

[
A

(C2;ha;1,0)
i (xi)

(
∆q(xi)A

(C2;hb;0,1)
j (x)

)
∆q(xi)∆p(xj)I(xi, xj)+

A
(C2;ha;1,0)
i (x)

(
∆q(xi)A

(C2;hb;0,1)
j

(
x−1

))
∆q(xi)∆

−1
p (xj)I(x) +

A
(C2;ha;1,0)
i

(
x−1

) (
∆−1

q (xi)A
(C2;hb;0,1)
j (x)

)
∆−1

q (xi)∆p(xj)I(x) +

A
(C2;ha;1,0)
i

(
x−1

) (
∆−1

q (xi)A
(C2;hb;0,1)
j

(
x−1

))
∆−1

q (xi)∆
−1
p (xj)I(x)

]
+

2∑
i=1

[
A

(C2;ha;1,0)
i (x)

(
∆q(xi)W

(C2;hb;0,1)(x)−W (C2;hb;0,1)(x)
)
∆q(xi)I(x)+

A
(C2;hb;0,1)
i

(
x−1

) (
∆−1

p (xi)W
(C2;ha;1,0)(x)−W (C2;ha;1,0)(x)

)
∆−1

q (xi)I(x)
]
−(

p ↔ q

a ↔ b

)
, (E.2)

where in the last line we substract all the terms written in the first six lines but with p and q

parameters as well as a and b indices exchanged. Now in order to compute this commutator

we should find the action of the shift operators ∆q(xi) and ∆p(xi) on the shift part Ai(x)

and constant part W (x). Using explicit expressions from (3.17) we obtain:

∆p(xi)W
(C2;ha;1,0)(x) = W (C2;ha;1,0)(x) ,

∆p(xi)A
(C2;ha;1,0)
j (x) = ∆p(xi)

−1A
(C2;ha;1,0)
j (x) = A

(C2;ha;1,0)
j (x) ,

∆p(xi)A
(C2;ha;1,0)
i (x) = (pq)−3hA

(C2;ha;1,0)
i (x) ,

∆−1
p (xi)A

(C2;ha;1,0)
i (x) = (pq)3h−1A

(C2;ha;1,0)
i (x) , (E.3)

where h in the last expression is as usually total U(1) charge defined in (3.16). Completely

identical expressions can be written for p and q exchanged. Using these expressions for the

commutator action (E.2) it is straightforward to see that it is just zero:[
O(C2;ha;1,0)

x , O(C2;hb;0,1)
x

]
I(x) = 0 . (E.4)

Since the test function I(x) is arbitrary we can conclude that the commutator itself is also

zero.

Now let’s move to the computation of more complicated type of commutators[
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
= 0 , ∀ a, b = 1, . . . , 10 . (E.5)

In this case the proof is more complicated since the periodicity properties of θ functions can

not be used anymore. Instead we will be using expansion in p and q parameters to perform
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this check. Once again we will use action of the commutator on an arbitrary test function

I(x): [
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
I(x) =

2∑
i,j=1

[
A

(C2;ha;1,0)
i (xi)

(
∆q(xi)A

(C2;hb;1,0)
j (x)

)
∆q(xi)∆p(xj)I(xi, xj)+

A
(C2;ha;1,0)
i (x)

(
∆q(xi)A

(C2;hb;1,0)
j

(
x−1

))
∆q(xi)∆

−1
q (xj)I(x) +

A
(C2;ha;1,0)
i

(
x−1

) (
∆−1

q (xi)A
(C2;hb;1,0)
j (x)

)
∆−1

q (xi)∆q(xj)I(x) +

A
(C2;ha;1,0)
i

(
x−1

) (
∆−1

q (xi)A
(C2;hb;1,0)
j

(
x−1

))
∆−1

q (xi)∆
−1
q (xj)I(x)

]
+

2∑
i=1

[
A

(C2;ha;1,0)
i (x)

(
∆q(xi)W

(C2;hb;1,0)(x)−W (C2;hb;1,0)(x)
)
∆q(xi)I(x)+

A
(C2;hb;1,0)
i

(
x−1

) (
∆−1

q (xi)W
(C2;ha;1,0)(x)−W (C2;ha;1,0)(x)

)
∆−1

q (xi)I(x)
]
−(

a ↔ b
)
, (E.6)

Since the test function I(x) is arbitrary in order to perform our checks we have to consider

contributions of all possible shifts of I(x) separately. Below we discuss such contributions

one by one.

1) Terms with ∆q(xi)∆q(xj)I(x). This kind of contributions in (E.6) come from the

following terms:[
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
A

(C2;ha;1,0)
i (x)

(
∆q(xi)A

(C2;hb;1,0)
j (x)

)
+

A
(C2;ha;1,0)
j (x)

(
∆q(xj)A

(C2;hb;1,0)
i (x)

)
− (a ↔ b)

]
∆q(xi)∆q(xj)I(x) . (E.7)

In order for the prefactor to be zero the following algebraic identity has to be satisfied:

F1(xi, xj , ha, hb) + F1(xj , xi, ha, hb)− F1(xi, xj , hb, ha)− F1(xj , xi, hb, ha) = 0 ,

F1(xi, xj , ha, hb) =

θp
(
xjx

±1
i

)
θp

(
(pq)

1
2hbqxi

)
θp

(
(pq)

1
2hbq

−1x−1
i

)
θp

(
(pq)

1
2hax

±1
j

)
θp (qxjxi) θp

(
q−1xjx

−1
i

) . (E.8)

In order to check this equation we expand all functions in p and q parameters. Since there are

just two variables x1 and x2 in this case we can fix i = 1 and j = 2 without loss of generality

and check equality in expansion up to the order O
(
p3q3

)
. This check suggests that indeed

these kind of terms do not contribute to the commutator (E.6).

2) Terms with ∆2
q(xi)I(x). This contribution comes from the following terms:[

O(C2;ha;1,0)
x , O(C2;hb;1,0)

x

]
I(x) ∼

[
A

(C2;ha;1,0)
i (x)

(
∆q(xi)A

(C2;hb;1,0)
i (x)

)
−

A
(C2;hb;1,0)
i (x)

(
∆q(xi)A

(C2;ha;1,0)
i (x)

)]
∆2

q(xi)I(x) . (E.9)
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We can now notice that

∆q(xi)A
(C2;ha;1,0)
i (x) =

2∏
j ̸=i

θp
(
x2i
)
θp
(
qx2i
)
θp

(
xix

±1
j

)
θp
(
q2x2i

)
θp
(
q3x2i

)
θp

(
qxix

±1
j

) ×

10∏
l=1

θp

(
(pq)

1
2h−1

l qxi

)
θp

(
(pq)

1
2h−1

l xi

) A
(C2;ha;1,0)
i (x) , (E.10)

so that the overall factor we get after acting with the shift ∆q(xi) does not depend on the index

a. Due to this independence it is clear that corresponding contribution to the commutator

(E.6) is zero.

3) Terms with ∆q(xi)∆
−1
q (xj)I(x). These terms come from the contribution:[

O(C2;ha;1,0)
x , O(C2;hb;1,0)

x

]
I(x) ∼

[
A

(C2;ha;1,0)
i (x)

(
∆q(xi)A

(C2;hb;1,0)
j

(
x−1

))
+

A
(C2;ha;1,0)
j

(
x−1

) (
∆−1

q (xj)A
(C2;hb;1,0)
i (x)

)
− (a ↔ b)

]
∆q(xi)∆

−1
q (xj)I(x) . (E.11)

In order for this term to vanish we need the following equation to be satisfied:

F2(xi, xj , a, b)− F2(xi, xj , b, a)− F2(x
−1
j , x−1

i , b, a) + F2(x
−1
j , x−1

i , a, b) = 0 ,

F2(xi, xj , a, b) =

θp

(
x−1
j x±1

i

)
θp

(
(pq)

1
2hbqxi

)
θp

(
(pq)

1
2hbq

−1x−1
i

)
θp

(
(pq)

1
2hax

±1
j

)
θp

(
qxix

−1
j

)
θp

(
q−1x−1

i x−1
j

) (E.12)

Just as previously we check this identity in p and q expansion up to an order of O
(
p3q3

)
and

thus show that corresponding contribution to the commutator is zero.

4) Terms with ∆q(xi)I(x). This kind of terms come from the contribution:[
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
A

(C2;ha;1,0)
i (x)

(
∆q(xi)W

(C2;hb;1,0) (x)
)
+

W (C2;ha;1,0) (x)A
(C2;hb;1,0)
i (x)− (a ↔ b)

]
∆q(xi)I(x) . (E.13)

This expression is hard to simplify so we checked it directly fixing i = 1 , j = 2 and expanding

up to an order O
(
p2q0

)
, O

(
p0q2

)
and O (pq) in p and q parameters. Up to these orders in

expansion we confirmed that corresponding contribution to the commutator is zero.

5) Constant terms I(x). This term comes from the contribution of[
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
W (C2;ha;1,0)(x)W (C2;hb;1,0) (x)−

W (C2;hb;1,0)(x)W (C2;ha;1,0) (x)
]
I(x) = 0 . (E.14)

This term is obviously zero since it does not involve any shift.

6) Terms with ∆−1
q (xi)∆

−1
q (xj)I(x). These terms can be directly obtained from Type

1 terms containing ∆q(xi)∆q(xj)I(x) by xi → x−1
i transformation of variables. Due to
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the xi → x−1
i symmetry of A∆O (3.17) we can immediately conclude that corresponding

contribution to the commutator action (E.6) is zero.

7) Terms with ∆−2
q (xi)I(x). These terms can be directly obtained from Type 2 terms

containing ∆2
q(xi)I(x) by xi → x−1

i transformation of variables. Hence by the same sym-

metry argument as in the previous case we can immediately conclude that corresponding

contribution to the commutator action (E.6) is zero.

8) Terms with ∆−1
q (xi)I(x). Contributions to the commutator action (E.6) of this type

are also zero which follows from the same argument as previous two terms. In this case it

can be obtained by using xi → x−1
i transformation in Type 4 terms.

Thus all eight types of terms present in the commutator (E.6) give zero contribution

and the full commutator action, and hence the commutator itself, appears to be zero. So

far we have shown it only in p and q expansion. But in principle this can be also proven

analytically by computing positions of the poles and corresponding residues of all equalities

we have checked in expansion. This way of proof is similar to the one we used in Appendix

D to prove kernel property (4.2).

The last type of commutator identities we would like to prove is[
O(C2;ha;0,1)

x , O(C2;hb;0,1)
x

]
= 0 , ∀ a, b = 1, . . . , 10 . (E.15)

But this commutator can be directly obtained from the previous commutator[
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
by the exchange p ↔ q. Hence all the arguments above work also

for this commutator which as result is indeed equal to zero.

To summarize, in this Appendix we gave arguments in favor of all commutation relations

(4.5). For the third commutator we gave full analytic proof while for the first and second we

checked commutation relations perturbatively in p and q expansion to sufficiently high order.
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