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Abstract: We study various duality webs involving the 3d FT [SU(N)] theory, a close

relative of the T [SU(N)] quiver tail. We first map the partition functions of FT [SU(N)]

and its 3d spectral dual to a pair of spectral dual q-Toda conformal blocks. Then we

show how to obtain the FT [SU(N)] partition function by Higgsing a 5d linear quiver

gauge theory, or equivalently from the refined topological string partition function on a

certain toric Calabi-Yau three-fold. 3d spectral duality in this context descends from 5d

spectral duality. Finally we discuss the 2d reduction of the 3d spectral dual pair and

study the corresponding limits on the q-Toda side. In particular we obtain a new direct

map between the partition function of the 2d FT [SU(N)] GLSM and an (N + 2)-point

Toda conformal block.
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1 Introduction

Over the last decade, following Nekrasov’s [1] and Pestun’s [2] seminal works, the

application of the localization technique to SUSY gauge theories on various manifolds,

has produced an unprecedented amount of exact results (for a comprehensive review

see [3] and references therein).

Localized partition functions (or vevs of BPS observables) depend on various param-

eters such as fugacities for the global symmetries and data specifying the background.

For certain backgrounds partition functions do not depend on the gauge coupling and

can be used to test Seiberg-like dualities and mirror symmetry in various dimensions.

The exact results obtained via localization have also led to the discovery of AGT-

like correspondences which provide dictionaries to map objects in the gauge theories

(partition functions, Wilson loops vevs etc. . . ) to objects in different systems such as

2d CFTs or TQFTs [4, 5].

It is interesting to study what happens when we take different limits of the pa-

rameters appearing in the partition functions triggering some sort of RG flows. For

example, focusing on the global symmetry parameters we can explicitly check how

certain dualities can be obtained by taking massive deformations of other dualities. We

can also consider limits involving the data specifying the background. For manifolds

of the form Md−1 × S1 we can explore what happens when the circle shrinks and in

particular gather hints on the fate of dualities in d dimensions: do they reduce to

dualities in d− 1 dimensions? In recent years these questions have been reconsidered

systematically in a series of papers [6–9].

Another interesting procedure, the so-called Higgsing, involves turning on the vev

of some operator in a certain UV theory T ′ which triggers an RG flow to an IR theory

T that contains a codimension two defect, the prototypical case being a surface operator

in a 4d theory. At the level of localized partition functions this procedure can be

implemented very efficiently and involves tuning the gauge and flavor parameters of

the mother theory T to specific values. At these values T typically develops some poles

and picking up their residues we obtain the partition function of the theory T with a

codimension two defect [10–16].

In this note we provide a concrete example where all these ideas and techniques

come together. We discuss 3d mirror symmetry, spectral duality and gauge/CFT

correspondences and explore how they behave under dimensional reduction and how

they arise via Higgsing.

Our starting point is the 3d T [SU(N)] quiver theory introduced in [17] as boundary

conditions for the 4d N = 4 supersymmetric Yang-Mills theories. T [G] has a global

symmetry group G×GL acting respectively on the Higgs and Coulomb branch. The

– 2 –



T [G] has the remarkable property of being invariant (or self-mirror) under 3d mirror

symmetry which acts by exchanging the Higgs and the Coulomb branches of the theory.

In this work we will consider a closely related quiver theory, the FT [SU(N)] theory,

which contains an additional set of gauge singlet fields. The FT [SU(N)] theory is also

self-dual under a duality which we call 3d spectral duality since it descends from 5d

spectral duality.

In particular we discuss three webs of dualities:

• In Duality web I, we relate the 3d spectral pair FT [SU(N)]↔ F̂ T [SU(N)] to a

pair of spectral dual q-CFT blocks via gauge/CFT correspondence.

• In Duality web II, we view the 3d spectral dual pair as the result of Higgsing

a pair of 5d spectral dual theories and the CY three-folds which geometrically

engineer them.

• In Duality web III, we reduce the 3d spectral dual pair to 2d and study the

corresponding limit of the q-CFT blocks.

Duality web I

Duality web I is shown in Fig. 1. In the top left corner we have BD2×S1

FT [SU(N)], the D2 × S1

BD2×S1

FT [SU(N)] B̂D2×S1

FT [SU(N)]

gauge/qDF gauge/qDF

spectral dual

spectral dual
qDF

AN−1

N+2 qD̂F
AN−1

N+2

Figure 1. Duality web I represents the relation between 3d FT [SU(N)] quiver gauge theories

and DF representations of the N + 2-point AN−1 q-Toda conformal blocks with N degenerate

primaries. 3d mirror symmetry of the gauge theories upstairs corresponds to the spectral

duality of the CFTs downstairs.

partition function, or holomorphic block,1 of the FT [SU(N)] theory. For this theory

1The background is actually twisted with twisting parameter q, i.e. D2 is fibered over S1 so that it

gets rotated by ln q every time one turns around S1. The notation D2 ×q S1 would be more proper,

however we omit the subscript q for the sake of brevity. The name holomorphic block is due to the fact

that D2 ×q S1 partition functions can be used to build partition functions on compact spaces, such as

S3 or S2 × S1 [18, 19].
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we turn real mass deformations for all the flavors and topological symmetries, so that

this theory has N ! isolated vacua. As we will see the FT [SU(N)] theory is self-dual

under the action of the spectral duality and correspondingly in the top right corner

we find the partition function B̂D2×S1

FT [SU(N)] of the dual theory. This edge of the web is a

genuine duality between two theories flowing to the same IR SCFT. However, here we

are only looking at the map of the mass deformed D2×S1 partition functions which can

be regarded as a refinement of the map between the effective twisted super-potential

evaluated on the Bethe vacua [20, 21] of the two theories [22]. A thorough discussion of

this duality will be provided in [23].

In Section 2 we discuss in detail the nontrivial map of the T [SU(N)] and FT [SU(N)]

holomorphic blocks under mirror symmetry and spectral duality using various approaches

including direct residue computations, the relation of the holomorphic blocks to the

integrable Ruijsenaars-Schneider (RS) system as in [24] and, in Sec. 3, using the relation

between holomorphic blocks, 5d gauge theories and refined topological strings.

The vertical edges of the web in Fig. 1 represent correspondences between gauge

theories and conformal blocks akin to the AGT correspondence [4, 25, 26]. One can

observe that the holomorphic block integrals BD2×S1
of 3d quiver theories can be directly

identified with the Dotsenko-Fateev (DF) integral representation of the conformal blocks

in q-deformed Toda theory. This correspondence is part of the so called triality proposed

in [27, 28] and generalized in [29–32].

In the particular case of the FT [SU(N)] theory we find that the holomorphic block

BD2×S1

FT [SU(N)] can be mapped to the conformal block qDF
AN−1

N+2 involving N fully-degenerate

and two generic primaries, and a particular choice of screening charges in the q-deformed

AN−1 Toda theory. The dual holomorphic block B̂D2×S1

FT [SU(N)] is also mapped to a qDF

integral block ˆqDF
AN−1

N+2 which is related to qDF
AN−1

N+2 by a “degenerate” version of spectral

duality. An exact meaning of this statement should become clear at the end of the

discussion of the Duality web II.

The details of the correspondence between holomorphic blocks of the FT [SU(N)]

theory and q-Toda integral blocks as well as spectral duality are presented in the Sec. 2.

Duality web II

Duality web I in fig. 1 can actually be understood as a consequence of another web of

dualities involving 5d N = 1 quiver theories and correlators of generic (non-degenerate)

q-deformed Toda vertex operators. More precisely, we consider the duality web II shown

in Fig. 2 where duality web I corresponds to the bottom face (face 1) of the cube. In

the top left corner we have the 5d N = 1 linear quiver gauge theory with (N − 1)

U(N) gauge nodes and N (anti-)fundamental matter hypermultiplets on each end of
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Z5d
U(N)N−1 Ẑ5d

U(N)N−1

S-dual

spectral dual
BD2×S1

FT [SU(N)] B̂D2×S1

FT [SU(N)]5 4
2
1

3

AGT

〈V1 · · ·VN+2〉qAN−1 〈V̂1 · · · V̂N+2〉qAN−1

spectral dual

spectral dual
qDF

AN−1

N+2 qD̂F
AN−1

N+2

6
Figure 2. Duality web II incorporates duality web I (face 1 of the cube) in a more general

context of 3d-5d-CFT triality.

the quiver. This theory is self-dual under 5d spectral duality which relates U(N)M−1 to

U(M)N−1 linear quiver theories compactified on a circle.

This is a duality between two low energy descriptions of the same strongly interacting

UV SCFT which can be conveniently understood using brane setup [33]. The details of

the maps of the parameters of the two theories are nontrivial and have been recently

discussed in [34] and [35]. This duality has been studied also in the context of integrability

in [36–40]. The term spectral for this duality comes from this interpretation.

We will be focusing on the R4×S1 instanton partition function which can be realised

using geometric engineering as the refined topological string partition function Ztop

associated to the square toric diagram depicted in Fig. 7 a). Then one can immediately

understand invariance of the square quiver theory under spectral duality as the fiber-base

duality corresponding to the reflection along the diagonal of the diagram.

The instanton or topological string partition functions are actually based on U(N)

quivers, so if we are interested in the SU(N) case, we should strip off the U(1) contri-

bution. This procedure is discussed for example in [35]. However, for the purpose of

this paper, where we discuss instanton partition functions, we can keep the U(1) parts

and work with the duality relating U(N)M−1 to U(M)N−1 theories.

In the other two vertices of face 2 we have an (N + 2)-point correlator in the the
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q-deformed AN−1 Toda theory and its spectral dual2.

The q-Toda correlators also enjoy the spectral duality relating (K + 2)-point

correlators in AN−1 q-Toda to (N + 2)-point correlators in AK−1 q-Toda theory [40, 41]

which is the avatar of the 5d spectral duality relating U(N)M−1 to U(M)N−1 5d quivers.

The identification between 5d instanton partition functions and q-Toda correlators is the

5d uplift of the AGT correspondence [42, 43]. More precisely, the AGT map corresponds

to the diagonal edges (shown in blue in Fig. 2), while the map along the edges of face 2

are from the triality approach [27, 28].

The vertical arrows going down from the 5d web (face 2) to the 3d web (face 1)

indicate a tuning procedure where the parameters are fixed to specific discrete values.

On the gauge theory side (face 3) this tuning corresponds to the so called Higgsing

procedure [10–16]. By tuning the 5d Coulomb branch parameters one can degenerate the

5d partition function into the partition function of a coupled 5d–3d system describing

co-dimension two defect coupled to the remaining 5d bulk theory. We consider particular

tuning of the parameters so that the square 5d quiver is Higgsed completely, i.e. it

reduces to the 3d FT [SU(N)] theory coupled to some free 5d hypers3. We demonstrate

this in Sec. 3. Repeating the Higgsing procedure on the spectral dual side we land on the

3d spectral dual FT [SU(N)] theory. We then see that 3d (self)-duality for FT [SU(N)]

follows via Higgsing from the 5d spectral duality for the square quiver.

On the q-Toda side (face 6) the tuning procedure corresponds to the tuning of the

momenta of the vertex operators to special values (corresponding to fully degenerate

vertex operators) and to a given assignment of screening charges (corresponding to

conditions on the internal momenta, or Coulomb branch parameters). In this way the

q-Toda AN−1 correlator with N semi-degenerate and two full primary operators reduces

to the q-DF representation of the conformal block.

This explains our previous statement that the integral blocks qDF
AN−1

N+2 and ˆqDF
AN−1

N+2

are related by a degenerate version of spectral duality.

Duality web III

Finally, starting from duality web I in Fig. 1 we can obtain another interesting duality

web by taking a suitable limit q → 1 as shown in Fig. 3, where the duality web I

corresponds to face 1 of the cube. Let’s consider face 3 in Fig. 3. Here we are performing

the reduction of a 3d spectral pair of theories on D2 × S1 from 3d to 2d by considering

2In the conformal block 〈V1 · · ·VN+2〉qAN−1
the primaries V1 and VN+2 have generic momenta while

all the others have momenta proportional to the same fundamental weight and correspond to simple

punctures in the AGT language.
3The T [SU(N)] vortex partition function has also been related to a ramified surface defect in the

5d N = 2∗ theory in [24].
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BD2×S1

FT [U(N)] B̂D2×S1

FT [U(N)]

spectral dual

2d massive mirror
BD2

FT [U(N)] BD2

LG
5 6
1
2

3qDF
AN−1

N+2 qD̂F
AN−1

N+2

spectral dual

spectral dual
dDF

AN−1

N+2 D̂F
AN−1

N+2

4
Figure 3. Duality web III. Fig. 1 is the top face (face 1) of the cube. The arrows going

downstairs correspond to q → 1 limits. Notice that the two theories related by the spectral

duality tend to different theories under q → 1. This asymmetry appears because one needs to

choose the scaling of the parameters with q and the spectral duality map relates two different

choices.

the q → 1 limit, which corresponds to shrinking the S1 radius. Taking this limit is

subtle, as recently discussed in [9] (and before in [44]), since there exist in fact several

meaningful limits. Concretely, one can consider the situation when some of the 3d real

mass parameters are scaled to infinity when going from 3d to 2d so that m3dR = m2d

remains finite as R→ 0.

Starting from BD2×S1

FT [SU(N)] we take the so called Higgs limits which reduces it to the

N = (2, 2) gauged linear sigma-model (GLSM) BD2

FT [SU(N)]. In the Higgs limit the real

mass scaled to infinity is the FI parameter, while the matter remains light, hence the

name. This limit generally reduces a 3d gauge theory to a 2d gauge theory. However,

here we want to lift also the Higgs branch and we turn on all the mass deformations so

that the 2d gauge theory is massive and has N ! isolated vacua.

Since spectral duality, similarly to mirror symmetry, swaps Higgs and Coulomb

branch parameters, on the dual side the limit has a very different effect. The dual

block B̂D2×S1

FT [SU(N)] in the q → 1 limit (which is now a Coulomb limit) reduces to the

partition function of a theory of twisted chiral multiplets with twisted Landau-Ginzburg

superpotential on D2. The horizontal link in face 2 of the cube in Fig. 3 is, therefore, a

duality of Hori-Vafa type [45] for mass deformed theories.

In general claiming that a duality for mass deformed theories implies a duality for
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massless theories is dangerous. In particular, in this context the subtleties of inferring

a genuine IR 2d duality from a duality for 2d mass deformed theories obtained from

the reduction of pairs of dual theories have been discussed in [8, 9]. Here we are

not interested in removing the mass deformations since, as we are about to see, the

holomorphic blocks for the mass deformed theories can be directly mapped to CFT

conformal blocks.

Indeed if we look at face 4 of the duality web III in Fig. 3, we see that we are taking

several different q → 1 limits of the q-Toda conformal blocks in DF representation.

Similarly to the gauge theory side there are several possible ways to take the limit. The

limit when we scale the momenta of the vertex operators and keep the insertion points

fixed is natural from the CFT point of view and reduces q-Toda conformal blocks to

conformal blocks of the undeformed Toda CFT. This is exactly the limit we take when

we reduce the spectral dual block qD̂F
AN−1

N+2 down to the undeformed conformal block

D̂F
AN−1

N+2 in 2d Toda theory. Therefore, we have just discovered that the 2d FT [SU(N)]

GLSM holomorphic block BD2

FT [SU(N)] is mapped to a 2d CFT conformal block D̂F
AN−1

N+2

(red diagonal on the face 4). In other terms we have derived the familiar gauge/CFT

correspondence between S2 partition functions and degenerate CFT correlators discussed

in [46–48] as a limit of our 3d spectral duality web.

Finally to complete the picture we study what is the effect of the q → 1 limit on

the qDF
AN−1

N+2 conformal block. This is a less familiar limit which reduces the qDF
AN−1

N+2

to a block in the channel with the vertex operators of certain bosonized algebra, which

we denote by d-WN , where d stands for difference in the same way as q in q-WN is for

quantum. The algebra4 d-WN is a particular limit of the q-WN algebra when q → 1. We

briefly describe the algebra, correlators and screening charges, leaving a more detailed

investigation for the future [50].

The Duality web III is discussed in Sec. 4.

2 Duality web I: 3d FT [SU(N)] and q-Toda blocks

In this section we study Duality web I shown in Fig. 1. We first introduce the 3d

holomorphic block BD2×S1

T [SU(N)](~µ, ~τ , q, t), then we show the effect of adding the flipping

fields and discuss the mirror and spectral duals of the theory. Finally we introduce

the DF representation for the q-Toda blocks and determine the gauge/q-DF dual to

BD2×S1

FT [SU(N)](~µ, ~τ , q, t).

4We thank A. Torrielli for pointing out a paper [49] in which a similar algebra has appeared earlier

in a very different context.
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2.1 3d blocks for T [SU(N)], flipping fields, mirror and spectral duals

2.1.1 3d holomorphic blocks

We begin by introducing our main character BD2×S1

T [SU(N)](~µ, ~τ , q, t), the D2 × S1 partition

function, or 3d holomorphic block integral for the T [SU(N)] theory. The N = 4

T [SU(N)] theory is a quiver theory with gauge group U(1)×U(2)×· · ·×U(N−1), with

bifundamental hypers connecting the U(Na) and U(Na+1) nodes for a = 1, · · · , N−2 and

N hypermultiplets at the final node. As an example we present the quiver diagram of the

T [SU(4)] theory on Fig. 4. We turn on real masses M3d
a in the Cartan of the SU(N)H

t t t

U(1) U(2) U(3) 4

τ1/τ2 τ2/τ3 τ3/τ4 µi

t µi

0

t

0

t

Figure 4. 3d T [SU(4)] gauge theory. τa are the FI parameters. The masses of the chirals are

indicated over or under the corresponding arrows.

symmetry rotating the Higgs branch and T 3d
a in the Cartan of the SU(N)C symmetry

rotating the Coulomb branch. We also turn on an extra real axial mass deformation

m3d for U(1)A, the anti-diagonal combination of U(1)C × U(1)H ∈ SU(2)C × SU(2)H ,

which breaks the super-symmetry down to N = 2∗. We define the dimensionless mass

parameters M ′
a = RM3d

a , T ′a = RT 3d
a and m′ = Rm3d and the parameter q = e~ = eRε,

where R is the S1 circle radius and ε is the equivariant parameter rotating the cigar D2

(see footnote 1).

The holomorphic block integral for this theory can be constructed as explained

in [18] and reads:

BD2×S1

T [SU(N)](~µ, ~τ , q, t) = F (q, t, ~τ)

∫
Γ

N−1∏
a=1

a∏
i=1

(
dx

(a)
i

x
(a)
i

eX
(a)
i (Ta−Ta+1)/~ t−X

(a)
i /~

)
×

N−1∏
a=1

a∏
i 6=j

(
x
(a)
j

x
(a)
i

; q
)
∞

a∏
i,j=1

(
t
x
(a)
j

x
(a)
i

; q
)
∞

N−2∏
a=1

a∏
i=1

a+1∏
j=1

(
t
x
(a+1)
j

x
(a)
i

; q
)
∞(

x
(a+1)
j

x
(a)
i

; q
)
∞

N∏
p=1

N−1∏
i=1

(
t µp

x
(N−1)
i

; q
)
∞(

µp

x
(N−1)
i

; q
)
∞

, (2.1)

where the prefactor F (q, t, ~τ) is given by

F (q, t, ~τ) = e−
2
3
N(N−1)(2N−1)~β(1−β)e−

m′2N
4~ e(1−β)

∑N−1
a=1

a2

2
(Ta+1−Ta) . (2.2)
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The integral is performed over the Cartan of the gauge group. For each gauge node we

have the contribution of vector and adjoint chiral multiplets (first factor in the second

line) given by a ratio of q-Pochhammer symbols defined as

(x; q)∞ =
∞∏
k=0

(
1− xqk

)
. (2.3)

The other factors in the second line are the contributions of the bifundamental chirals

and of the fundamentals attached to the last node.

More precisely (qx−1; q)∞ is the contribution to the block integral of a chiral

multiplet of zero r-charge and charge +1 under a flavor symmetry with associated real

mass x, plus a −1
2

Chern-Simons unit. This corresponds to a chiral multiplet with

Dirichlet boundary conditions along ∂(D2 × S1) = T 2 in [51]. A chiral multiplet of

r-charge +2, charge −1 and 1
2

Chern-Simons unit contributes as (x; q)−1
∞ and corresponds

to Neumann boundary conditions5.

If we assemble the matter contribution to the block integrals taking some chirals with

Dirichlet and some with Neumann boundary conditions we induce mixed Chern-Simons

couplings (because of the attached 1
2

units) which we might need to compensate by

5There is a relation between these two setups:

(qx−1; q)∞ =
θq(x)

(q; q)∞
(x; q)−1∞ , (2.4)

which can be explained by viewing the 3d theory of a single chiral multiplet φ as a linear sigma model

with target C. Dirichlet boundary conditions on ∂(D2 × S1) = T 2 correspond to a D-brane at a point

φ = 0 in the target. However, one can view the D-brane in a different way, as (an equivalence class of)

a complex of sheaves

0→ O(C)
s→ Ω1,0(C)→ 0 (2.5)

supported on the whole C. Here O(C) is the sheaf of functions on C, and Ω1,0(C) is that of (1, 0)

differential forms, e.g. g(φ)ψ, where ψ is an anticommuting coordinate on the fiber; the differential

s = φψ is nilpotent because ψ2 = 0. The relation between the brane at fixed φ = 0 and the complex is

as follows. Mnemonically, one can think that the two terms of the complex (2.5) “cancel” everywhere

outside the point φ = 0. More concretely, the space of functions on a point {φ = 0} ⊂ C can be

equivalently described by the cohomology of the complex (2.5):

H0
s (C) = ker s = 0 (2.6)

H1
s (C) = Ω1,0(C)/Im s =

{ψg(φ)}
g(φ) ∼ g(φ) + φf(φ)

= {const} = C, (2.7)

In the field theory language O(C) corresponds to a 3d free chiral with Neumann boundary conditions,

while to get the whole complex Ω•,0(C) from (2.5) one needs to add a 2d free chiral fermion ψ living

on T 2 whose partition function is precisely given by
θq(x)
(q;q)∞

. The identity (2.4) is therefore just the

equivalence between two views on the D-brane.
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adding extra Chern-Simons terms to the action. With our symmetric choice of boundary

conditions the induced dynamical Chern-Simons couplings vanishes automatically,

the induced mixed gauge-flavor couplings (the t
−X(a)

i
~ factor in the integrand (2.1))

renormalize the FI parameters, while the background mixed couplings contribute as the

prefactor F (q, t, ~τ).

To present the block in a form more convenient for the following we have shifted

the integration variables and identified a new set of exponentiated mass parameters6

x
(a)
i = eX

(a)
i , µp = eMp = eM

′
p

(q
t

)N/2
,

τp = eTp = eT
′
ptN/2, t = qβ = −q1/2e−m

′
. (2.9)

An alternative procedure to write down the block integrand Υ is to view it as “square

root” of the integrand of the partition function on a compact manifold. Details of this

procedure are presented in the Appendix A. This construction also indicates that the

contribution of (mixed) Chern-Simons coupling to the partition function should actually

be expressed in terms of ratios of theta functions rather than exponents

e
AB
~  

θq(e
A)θq(e

B)

θq(eA+B)(q; q)∞
(2.10)

as we discuss in Appendix A. However, for the purpose of this paper we can avoid

introducing theta functions and work with the exponents provided that on the integration

contours on which we are going to evaluate the blocks, the theta functions and the

exponents have no poles and contribute with the same residue. One can check that for

T [SU(N)] blocks (2.1) this will indeed be the case. As will be shown below, the residues

of the integrals (2.1) come in geometric progressions, i.e. a pole x∗ is accompanied by a

string of poles at qkx∗ with k ∈ Z≥0. Notice then that both sides of Eq. (2.10) transform

in the same way under the ~-shifts of A and B variables, i.e. under q-shifts of eA and eB.

Thus, their contributions to the residues in the string differ only by an overall constant

factor, independent of k. This overall constant can be factored out of the integral and

included in the normalization factors.

Finally we need to discuss the integration contour on which we evaluate the block

integral. The integration in Eq. (2.1) is performed over a basis of integration contours

6The shifted mass parameters satisfy:

N∑
i=1

Mi = ~(1− β)
N2

2
,

N∑
i=1

Ti = ~β
N2

2
. (2.8)

The parameter t introduced in this section will be identified with the parameter of the 5d Ω-background

R4
q,t × S1 and with the (q, t)-Toda parameter in the next sections.
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Γ = Γα, with α = 1, . . . , N ! which are in one to one correspondence with the SUSY

vacua, the critical points of the one-loop twisted superpotential WR2×S1
. The label of

the integration contour α is essentially an element of the permutation group SN . One

can understand the origin of the contours Γα as follows.

The integrations in Eq. (2.1) can be done step by step starting from x
(N−1)
i and

proceeding to x
(1)
1 . There are (N −1) integration variables at the first step. The poles of

the integrand in x
(N−1)
i correspond to zeroes of

∏N
p=1

∏N−1
i=1 (µp/x

(N−1)
i ; q)∞. Moreover,

upon closer examination one can see that each x
(N−1)
i should be of the form qk

(N−1)
i µp

with integer k
(N−1)
i and distinct values of p, i.e. each of (N − 1) variables x

(N−1)
i settles

at a pole close to its own mass µp and no two of the variables can sit near the same

mass. Therefore, there are N possible configurations with (N − 1) variables filling N

places (the integrand is symmetric in x
(N−1)
i ). Evaluating the residues in x

(N−1)
i we can

proceed to the next step of integration. Here the situation is repeated: there are (N − 2)

integration variables x
(N−2)
i and (N − 1) variables x

(N−1)
i from the previous step play

the role of µp for them. The poles in x
(N−2)
i are located at qk

(N−2)
i −k(N−1)

i x
(N−1)
j with

integer k
(N−2)
i ≥ k

(N−1)
i and again no two variables x

(N−2)
i can sit near the same x

(N−1)
j .

There are (N − 1) possibilities at this step. Proceeding further, one notices the general

pattern: the poles at each step sit near the poles of the previous step with one free

place. Equivalently, there are (N − 1) strings of poles with lengths 1, 2, . . . , (N − 1), in

each of which the poles are close together, e.g. for a string of length a we get

x(a)
a = qk

(a)
a −k

(a+1)
a x(a+1)

a = qk
(a)
a −k

(a+2)
a x(a+2)

a = . . . = qk
(a)
a −k

(N−1)
a x(N−1)

a = qk
(a)
a µp (2.11)

where k
(a)
i are all integers and we have used the symmetry of the integrand in x

(a)
1 , . . . ,

x
(a)
a to set all the lower indices in the string to a. Each string terminates at the the

free place, not filled by the pole on the next step. Choosing the integration contour is

equivalent to specifying which string (of length a) sits near which mass µp. Evidently,

any choice can be obtained from a given one by the unique permutaiton of masses µp.

There are therefore N ! choices in total, each one corresponding to an element of the

symmetric group SN .

We will do the calculations for a certain convenient reference choice of contour

α = α0, i.e. in the reference vacuum in which

x
(a)
i = qk

(a)
i µi (in vacuum α0). (2.12)

In this vacuum one can expand the vortex partition function as a double series in µi
µi+1

and τi
τi+1

, i.e. it is implicitly assumed that the theory sits in the chamber of the moduli

space where τi
τi+1
� 1. Blocks for other vacua can be obtained from the block in the

reference vacuum by analytic continuation in τi
τi+1

, taking into account the intricate

– 12 –



(theta-function) connection coefficients. Let us also notice that since the block is self-dual

under mirror symmetry, analytic continuation in µi and τi will give the same results.

The integration over Γα0 yields

BD2×S1, (α0)
T [SU(N)] = Z

3d, (α0)
cl Z

3d, (α0)
1−loop Z

3d, (α0)
vort (2.13)

where Z
3d, (α0)
cl , Z

3d, (α0)
1−loop and Z

3d, (α0)
vort denote the classical, perturbative one-loop and

nonperturbative vortex contributions respectively. We have7

Z
3d, (α0)
cl (~µ, ~τ , q, t) = F (q, t, ~τ) (q; q)

−N(N−1)
2∞

N∏
i=1

e
(Ti−TN )Mi

~ t−
(N−i)Mi

~

N∏
i<j

θq

(
t
µj
µi

)
θq

(
µj
µi

) . (2.14)

The one-loop factor is given by:

Z
3d, (α0)
1−loop (~µ, ~τ , q, t) =

∏
i<j

(
q µi
µj

; q
)
∞(

q
t
µi
µj

; q
)
∞

. (2.15)

Notice that there are cancellations between the theta-functions in classical part and the

q-Pochhammer functions in the one-loop part. The vortex part reads8

Z
3d, (α0)
vort (~µ, ~τ , q, t) =

=
∑

k
(a)
i ∈(2.17)

N−1∏
a=1

(t τa
τa+1

)∑a
i=1 k

(a)
i

a∏
i 6=j

(
t µi
µj

; q
)
k
(a)
i −k

(a)
j(

µi
µj

; q
)
k
(a)
i −k

(a)
j

a∏
i=1

a+1∏
j=1

(
q
t
µi
µj

; q
)
k
(a)
i −k

(a+1)
j(

q µi
µj

; q
)
k
(a)
i −k

(a+1)
j


(2.16)

7We can trade the theta-functions for exponents using the equivalence (2.10), but we retain the

exact answer for the integration for the sake of completeness.
8There are several ways to write the instanton contributions in this sum connected to each other

by identities involving products of q-Pochhammer symbols. For example, the middle factor can be

rewritten as:

a∏
i 6=j

(
t µi

µj
; q
)
k
(a)
i −k

(a)
j(

µi

µj
; q
)
k
(a)
i −k

(a)
j

=

a∏
i 6=j

(
q µi

µj
; q
)
k
(a)
i −k

(a)
j(

q
t
µi

µj
; q
)
k
(a)
i −k

(a)
j
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where we assume k
(N)
i = 0 and the sum is over sets of integers k

(a)
i satisfying the

inequalities

k
(1)
1 ≥ k

(2)
1 ≥ k

(3)
1 ≥ · · · ≥ k

(N−1)
1 ≥ 0

k
(2)
2 ≥ k

(3)
2 ≥ · · · ≥ k

(N−1)
2 ≥ 0

k
(3)
3 ≥ · · · ≥ k

(N−1)
3 ≥ 0

. . .
...

k
(N−1)
N−1 ≥ 0

(2.17)

The block can actually be expressed through higher q-hypergeometric functions. This

representation also allows one to deduce the monodromy properties of the block under

the permutation of parameters τi → τσ(i). However, these issues will not be considered

in the present work. In the semiclassical limit BD2×S1, (α)
T [SU(N)] ∼ eW

R2×S1
(α)

/~ where WR2×S1

(α) is

the one-loop twisted superpotential evaluated on the α-th vacuum.

2.1.2 Mirror duality

We will consider two similar but subtly different dualities of the T [SU(N)] theory: the

mirror duality and the spectral duality, explaining the relationship between them and

their differences.

The mirror duality [52] (which in this case is a self-duality [17]) swaps the Higgs

and Coulomb branches and consequently the vector masses and FI parameters Mi ↔ Ti
and sends m↔ −m or in terms of the exponentiated parameters:

µi ↔ τi , t→ q

t
. (2.18)

The mirror block is given by:

B̌D2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = BD2×S1, (α)

T [SU(N)]

(
~τ , ~µ, q,

q

t

)
=

= F̌ (q, t, ~τ)

∫
Γα

N−1∏
a=1

a∏
i=1

dx
(a)
i

x
(a)
i

N−1∏
a=1

a∏
i=1

eX
(a)
i (Ma−Ma+1)/~

(
t

q

)X(a)
j /~

×

×
N−1∏
a=1

a∏
i 6=j

(
x
(a)
j

x
(a)
i

; q
)
∞

a∏
i,j=1

(
q
t

x
(a)
j

x
(a)
i

; q
)
∞

N−2∏
a=1

a∏
i=1

a+1∏
j=1

(
q
t

x
(a+1)
j

x
(a)
i

; q
)
∞(

x
(a+1)
j

x
(a)
i

; q
)
∞

N∏
p=1

N−1∏
i=1

(
q
t

τp

x
(N−1)
i

; q
)
∞(

τp

x
(N−1)
i

; q
)
∞

. (2.19)

Showing that the T [SU(N)] holomorphic block is self-dual, i.e. that

BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = B̌D2×S1, (α′)

T [SU(N)] (~µ, ~τ , q, t) (2.20)
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or equivalently

BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = BD2×S1, (α′)

T [SU(N)]

(
~τ , ~µ, q,

q

t

)
(2.21)

is fairly complicated. As discussed in [18] if we want to describe how the bases of

contours α and α′ are related we need to take into account Stokes phenomena. One

approach is to use mirror-invariant combinations of blocks, e.g. squashed sphere partition

functions.

Here we take a different approach showing that the space of blocks is invariant

under the mirror map. Following [24] we can view the space of blocks for the T [SU(N)]

theory as the space of solutions to a system of linear difference equations:

Hr(µi, q
µi∂µi , q, t)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t) = er(~τ)BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) (2.22)

where the difference operators are quantum Ruijsenaars-Schneider Hamiltonians [53, 54]:

Hr = t
r(r−1)

2

∑
I⊂{1,...,N}
|I|=r

∏
i∈I
j /∈I

tµi − µj
µi − µj

q
∑
i∈I µi∂µi (2.23)

and the eigenvalues er(~τ) are elementary symmetric polynomials

er(~τ) =
N∑

i1<···<ir

τi1 · · · τir . (2.24)

We give a short proof of Eq. (2.22) for r = 1 in Appendix D.1. From the theory of

integrable systems it is known that Ruijsenaars-Schneider system has a peculiar duality

symmetry called p-q duality. It implies that for certain choice of normalization the

eigenfunctions of the Ruijsenaars-Schneider Hamiltonian are actually also eigenfunctions

of the dual Ruijsenaars-Schneider Hamiltonian. The dual operator is obtained by the

mirror map: ~τ and ~µ are exchanged as are t and q
t
. We therefore have:

Hr

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = er(~µ)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t) (2.25)

We prove the simplest case of Eq. (2.25) for r = 1, N = 2 in Appendix D.2. The

self-mirror property of the blocks (2.21) follows from Eqs. (2.22) and (2.25).

Alternatively we can check mirror symmetry by “brute force” computation of the

partition function. Using explicit expressions (2.14), (2.15) and (2.16) for the one-loop

and vortex parts of the partition function we can see that

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t) = Z

3d, (α0)
1−loop

(
~τ , ~µ, q,

q

t

)
Z

3d (α0)
vort

(
~τ , ~µ, q,

q

t

)
(2.26)
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and using the conditions (2.8) for the sum of masses and FI parameters (up to the

equivalence (2.10)):

Z
3d, (α0)
cl (~µ, ~τ , q, t) = Z

3d, (α0)
cl

(
~τ , ~µ, q,

q

t

)
. (2.27)

As a very simple test of the mirror symmetry (2.26) consider two degenerate limits

of the T [SU(N)] block:

1. t = q. In this case all the terms of the vortex series, except the first one vanish:

Z
3d,(α0)
vort (~µ, ~τ , q, q) = 1. (2.28)

The one-loop factor also simplifies and reads

Z
3d,(α0)
1−loop (~µ, ~τ , q, q) =

∏
i<j

1

1− µi
µj

. (2.29)

2. t = 1. In this case the vortex sum factorizes into a product of geometric progres-

sions:

Z
3d,(α0)
vort (~µ, ~τ , q, 1) =

∏
i<j

1

1− τi
τj

. (2.30)

The one-loop part becomes trivial:

Z
3d,(α0)
1−loop (~µ, ~τ , q, 1) = 1. (2.31)

Two degenerate cases are mirror dual to each other and one immediately sees that

Eq. (2.26) indeed holds in this limit.

2.1.3 Flipping fields and spectral duality

We now introduce the modification of the T [SU(N)] model, in which we add N2 singlets

fields, the flipping flieds, transforming in the adjoint of the SU(N) flavor symmetry

group. These fields modify the T [SU(N)] superpotential by the extra term

W = FijQij, (2.32)

where Qij is the meson matrix, built from the bifundamental chirals qai at the rightmost

node of the quiver from Fig. 4:

Qij =
N−1∑
a=1

qai q̄
a
j , (2.33)
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so that if the bifundamental has R-charge r, then R[Qij] = 2r and R[Fij] = 2 − 2r .

We call the resulting theory FT [SU(N)], where F indicates the flipping of the Higgs

branch operators (the meson).

Since flipping fields are gauge singlets, they simply modify the D2 × S1 partition

function of T [SU(N)] by multiplicative factors in front of the integral:

BD2×S1, (α)
FT [SU(N)](~µ, ~τ , q, t) = f(~µ, q, t)−1BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t), (2.34)

where9

f(~µ, q, t) = e(1−2β)
∑N
i=1(i−1)Mi

N∏
k<l

(
tµk
µl

; q
)
∞(

q
t
µk
µl

; q
)
∞

. (2.35)

The factor f(~µ, q, t) crucially modifies the action of the RS Hamiltonians (2.23) on the

block. One proves by direct computation that

Hr

(
µi, q

µi∂µi , q,
q

t

)
= f(~µ, q, t)−1Hr(µi, q

µi∂µi , q, t)f(~µ, q, t). (2.36)

Since the block BD2×S1, (α)
T [SU(N)] is the eigenfunction of Hr(µi, q

µi∂µi , q, t)f(~µ, q, t), the holo-

morphic blocks of the flipped theory FT [SU(N)] are eigenfunctions of Hr

(
µi, q

µi∂µi , q, q
t

)
with the same eigenvalues. Moreover, since f(~µ, q, t) does not depend on τ , the flipped

block f(~µ, q, t)−1BD2×S1

T [SU(N)](~µ, ~τ , q, t) is still an eigenfunction of the dual RS Hamiltonians

Hr(τi, q
τi∂τi , q, q

t
). Hence we conclude that because BD2×S1

T [SU(N)](~µ, ~τ , q, t) is invariant under

the mirror duality (2.18), the flipped block BD2×S1

FT [SU(N)](~µ, ~τ , q, t) is invariant under the

spectral duality:

µi ↔ τi , t→ t . (2.37)

We denote the spectral dual block by B̂D2×S1,(α)
FT [SU(N)](~µ, ~τ , q, t) (notice the hat instead of the

tick, which we have used for the mirror block). For our special contour α0 we have

B̂D2×S1,(α0)
FT [SU(N)] (~µ, ~τ , q, t) = BD2×S1,(α0)

FT [SU(N)] (~τ , ~µ, q, t). (2.38)

We will discuss the origin of the spectral duality when we come to the brane

description of the flipped theory in sec. 3. In [23] we will examine in the detail this

duality together with another duality obtained from T [SU(N)] by flipping simultaneously

the Higgs and Coulomb branch operators.

9We could equivalently use a combination of theta-functions instead of powers for the contact terms

multiplying the q-factorials to make f a 2πi-periodic function of Mi. Notice also that f(~µ, q, qt ) =

f(~µ, q, t)−1.
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2.2 q-Toda blocks

In a series of works [27, 28, 31] partition functions of 3d theories have been shown

to match conformal blocks in q-deformed Toda theories10. In this section we will

demonstrate the details of the correspondence between holomorphic blocks of the

FT [SU(N)] theory and conformal blocks of the q-Toda CFT. For this we will first review

basic aspects of An Toda CFT and derive Dotsenko-Fateev (DF) integrals describing

conformal blocks in certain channel. In this part we will closely follow [27, 28, 56]. Then

we will briefly describe quantum deformation of the Toda theory and corresponding

qDF integrals. Finally we will describe the map between parameters of FT [SU(N)]

theory and q-Toda CFT that will allow us to manifestly match holomorphic blocks and

qDF integrals on two sides of the correspondence.

2.2.1 Warm-up: conformal block of ordinary Toda

We begin by quickly introducing the integral representation of the Toda conformal

blocks, for more detailed review see [56]. The action of the theory is given by

SToda =

∫
dz dz̄

√
g

[
gzz̄(∂z~φ, ∂z̄~φ) +Qβ(~ρ, ~φ)R +

n∑
a=1

e
√
β(~φ,~e(a))

]
, (2.39)

where ~φ is the (n+ 1)−component vector whose components φ(a) are bososnic fields in

2d Toda CFT. ~ρ and ~e(a) are the Weyl vector and the simple roots of the An Lie algebra

respectively: (
~ρ, ~φ

)
=

1

2

n+1∑
a=1

(n− 2a+ 2)φ(a),(
~φ, ~e(a)

)
= φ(a) − φ(a+1). (2.40)

The first term in the action (2.39) is just the canonical kinetic term with (inverse)

background metric gzz̄, while (. , .) denote the standard scalar product on Rn+1. Second

term in the action is responsible for the nonminimal coupling of ~φ to the background

curvature R. Coefficient of the coupling Qβ is

Qβ =
√
β − 1√

β
, (2.41)

where β is a convenient parameter, which will be used throughout this paper. Finally

the last term in (2.39) is the Toda potential. The theory described above possess Wn+1

10An alternative map between q-CFT correlators and 3d partition functions have been discussed

in [55]. This approach is similar to the map between S2 partition functions and CFT correlators

discussed in [46–48].
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symmetry, which has Virasoro subalgebra with the central charge parametrized by β in

the following way:

c = n− n(n+ 1)(n+ 2)Q2
β . (2.42)

Basic ingredients we will need for finding correlators in Toda CFT are screening

currents

S(a)(x) = : exp

[√
β
∑
k 6=0

n+1∑
b=1

1

k
c

(b)
k e

(a)
b x−k

]
: exp

[√
β
n+1∑
b=1

Q(b)e
(a)
b

]
x

√
β
n+1∑
b=1

e
(a)
b P (b)

=

= : exp

[√
β
∑
k 6=0

(
c

(a)
k − c

(a+1)
k

) x−k
k

]
: e
√
β(Q(a)−Q(a+1)) x

√
β(P (a)−P (a+1)), (2.43)

where the index a, which we call the sector number, runs from 1 to n for An theory.

We will also need vertex operators defined as follows:

V~α(z) = : exp

[
1√
β

∑
k 6=0

n+1∑
a=1

c
(a)
k αa

z−k

k

]
: e

1√
β

n+1∑
a=1

Q(a)αa
z

1√
β

n+1∑
a=1

αaP (a)

, (2.44)

where ~α is the (n+ 1)−component weight of the operator. Bosonic operators c
(a)
k satisfy

the Heisenberg algebra

[c
(a)
k , c(b)

m ] = k δk+m,0 δa,b , (2.45)

and P (a), Q(a) are zero-modes satisfying usual commutation relations:[
P (a), Q(b)

]
= δa,b . (2.46)

Now assume that we would like to calculate the following chiral half of the correlator

of (l + 2) primary vertex operators in Toda theory

〈V~α(∞)(∞)V~α(1) (z1) · · ·V~α(l) (zl) V ~α(0)(0) 〉Toda =∫
D~φ V~α(∞) (∞) V~α(1) (z1) · · ·V~α(l) (zl) V~α(0) (0) e−SToda , (2.47)

where zk and ~α(k) are positions and weights of corresponding vertex operator insertions.

In general, due to the complicated interaction potential, evaluation of this correlator is

extremely hard. However, one can treat Toda potential perturbatively. In this case the

full answer for the correlator can be written as the sum of the following correlators in

the theory of (n+ 1) free bosons:

DFAnl+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, β)

def
= 〈~α(∞)|V~α(1) (z1) . . . V~α(l) (zl)

n∏
a=1

QNa
(a)|~α

(0)〉free ,

(2.48)
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which play the role of the conformal blocks in Toda theory and are usually referred to

as Dotsenko-Fateev (DF) integrals [57]. Here Q(a) are screening charges defined as the

integrals of the corresponding screening currents:

Q(a)
def
=

∮
dxS(a) (x) , (2.49)

and the states |~α(0)〉 and |~α(∞)〉 are defined as follows:

|~α〉 =
1√
β
e

n+1∑
a=1

αaQ(a)

|0〉 (2.50)

so that it is the eigenstate of the momentum operators P (a) and is annihilated by the

positive modes:

P (a)|~α〉 =
1√
β
αa|~α〉, (2.51)

c(a)
n |α〉 = 0, ∀n > 0. (2.52)

Due to the operator-state correspondence the ket state |~α〉 can be created by the

insertion of the vertex operator (2.44) of weight ~α at point z = 0. Bra state 〈~α| is

created by inserting the corresponding operator at z =∞. We understand the weight

~α(0) of the vertex operator at zero to be a free parameter of the correlator. Then the

weight ~α(∞) is determined uniquely by the momentum conservation relation, which

needs to be satisfied in order for the correlator (2.48) to be nonzero:

2
√
βQβ~ρ = ~α(0) + ~α(∞) +

l∑
j=1

~α(j) + β
n∑
a=1

Na~e(a) , (2.53)

where ~ρ and ~e(k) are given by Eqs. (2.40). The calculation of the free field correlator (2.48)

is presented in Appendix B.1 and results in

DFAnl+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, β) ∼

∼
l∏

p<k

(zp − zk)
1
β (~α(p), ~α(k))

∮ n∏
a=1

Na∏
i=1

dx
(a)
i

n∏
a=1

Na∏
i=1

(
x

(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)

×

×
n∏
a=1

Na∏
i 6=j

(
1−

x
(a)
j

x
(a)
i

)β n−1∏
a=1

Na∏
i=1

Na+1∏
j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β l∏
p=1

n∏
a=1

Na∏
i=1

(
1− x

(a)
i

zp

)α
(p)
a −α

(p)
a+1

.

(2.54)
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In the Virasoro (A1) case, the free field integrals are of Selberg type and can be calculated.

In the higher rank case the situation is much more complicated and it is known how to

evaluate the integrals only for special values of the momenta of the vertex operators.

As we will see in this paper we are indeed interested in special value of the momenta

for which we can calculate the integrals.

2.2.2 q-Toda conformal blocks

The An Toda theory admits a q-deformation which is described in detail in [58–60].

Below we will use free boson representation of this deformed algebra in order to derive

the corresponding conformal blocks of the An q-Toda CFT. For our calculations we use

screening currents and vertex operators from [27, 28], which are given by

Sq(a)(x) = : exp

(
−
∑
k>0

1− tk

1− qk
c

(a)
k

x−k

k
+
∑
k>0

c
(a)
−k
xk

k

)
×

× exp

(∑
k>0

1− tk

1− qk
vk c

(a+1)
k

x−k

k
−
∑
k>0

vk c
(a+1)
−k

xk

k

)
:×

× e
√
βQ(a)

x
√
βP (a)

e−
√
βQ(a+1)

x−
√
βP (a+1)

(2.55)

where t = qβ and we have introduced v =
√

q
t
. Similarly to the undeformed case the

sector index a runs between 1 and n. Bosonic operators c
(a)
k , Q(a), P (a) satisfy the

Heisenberg algebra (2.45)

q-deformed primary vertex operator is chosen to have the form

V q
~α (z) = : exp

(∑
k>0

n+1∑
a=1

qkαa − 1

1− qk
c

(a)
k v−ka

z−k

k
+

∑
k>0

n+1∑
a=1

(
q−kαa − v2k(N−a−1)

)
1− tk

c
(a)
−kv

ka z
k

k

)
: × e

1√
β

n+1∑
a=1

αaQ(a)

z
1√
β

n+1∑
a=1

αa P (a)

,(2.56)

where ~α is the weight vector just as in Eq. (2.44). Essentially this is the vertex operator

of the same form11 as the one that can be found in [27, 28]. However in the latter

case authors have omitted central part of the operator, i.e. ~α-independent part that

commutes with the screening current S(x) given in (2.55). As we will see this part

appears to be essential for us so we keep it.

11For precise matching of ~α-dependent part one also needs to perform shift of weights αa →
αa + 1

2a(1− β) for the vertex operators used in [27, 28]
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As in the non-deformed case we are interested in the following free field correlator

qDFAnl+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, q, t)

def
= 〈~α(∞)|V q

~α(1) (z1) . . . V q

~α(l) (zl)
n∏
a=1

QNa
(a)|~α

(0)〉free ,

(2.57)

where Q(a) are screening charges related to the screening currents (2.55) in the same

way as in non-deformed case (2.49). Initial and final states |~α(0)〉, |~α(∞)〉 are defined in

Eq. (2.50). Conservation relation (2.53) that constraints weights of the vertex operators

also holds in the q-deformed case.

The free field calculation in the q-Toda conformal block is similar to the undeformed

case and is presented in Appendix B.2. The final result is given by the following matrix

integral:

qDFAnl+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, q, t) ∼ Cq

vert (~α, z)
l∏
p

z

1
β (~α(p),~α(0))+

N∑
a=1

Na
(
α
(p)
a −α

(p)
a+1

)
p ×

∮ n∏
a=1

Na∏
i=1

dx
(a)
i

n∏
a=1

Na∏
i=1

(
x

(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)+

l∑
p=1

(
α
(p)
a −α

(p)
a+1

)
×

×
n∏
a=1

Na∏
i 6=j

(
x
(a)
j

x
(a)
i

; q

)
∞(

t
x
(a)
j

x
(a)
i

; q

)
∞

n−1∏
a=1

Na∏
i=1

Na+1∏
j=1

(
u
x
(a+1)
j

x
(a)
i

; q

)
∞(

v
x
(a+1)
j

x
(a)
i

; q

)
∞

l∏
p=1

n∏
a=1

Na∏
i=1

(
q1−α(p)

a va zp

x
(a)
i

; q

)
∞(

q1−α(p)
a+1va zp

x
(a)
i

; q

)
∞

,

(2.58)

where u =
√
qt and Cvert is the prefactor coming from ordering different vertex operators.

Precise form of this prefactor is given in (B.20). The expression appears to be very

complicated. However, as we will see further, in cases relevant for us, in particular when

some of the vertices are (semi-)degenerate, this expression simplifies drastically.

2.3 Map between FT [SU(N)] and q-Toda blocks

The q-Toda blocks in DF representation have been shown to map to the holomorphic

blocks of the handsaw quiver theory [27, 28]. Here we are interested in the simpler

case of the FT [SU(N)] holomorphic block which can be mapped to a AN−1 q-Toda

block with full primary initial and final states and N fully degenerate primary vertex

operators between them (we again omit the prefactors in front of both integrals in

holomorphic and conformal blocks):

BD2×S1

FT [SU(N)] ∼ qDF
AN−1

N+2 . (2.59)
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with the identification of parameters which we give momentarily.

We begin by considering an (N + 2)−point conformal block with the weights of the

vertex operators satisfying the following relation:

α
(p)
a+1 = α(p)

a , a = 1, . . . , N − 2, p = 1, . . . , N . (2.60)

The initial state has generic weight ~α(0) and the weight ~α(∞) is fixed by the charge

conservation condition (2.53). We also specify the number of screening charges to be

Na = a for a = 1, . . . , N − 1. With this choice of momenta (2.60) and screening charges

q-Toda conformal block (2.58) reduces to the following expression

〈~α(∞)|V q

~α(1)(z1) · · ·V q

~α(N)(zN)
N−1∏
a=1

(
Qq

(a)

)a
|~α(0)〉 ∼

∮ N−1∏
a=1

a∏
i=1

dy
(a)
i ×

×
N−1∏
i=1

(
y

(N−1)
i

)β(N−2)+α
(0)
N−1−α

(0)
N +

N∑
p=1

(
α
(p)
N−1−α

(p)
N

)
N−2∏
a=1

a∏
i=1

(
y

(a)
i

)−2β+α
(0)
a −α

(0)
a+1 ×

×
N−1∏
a=1

a∏
i 6=j

(
y
(a)
j

y
(a)
i

; q

)
∞(

t
y
(a)
j

y
(a)
i

; q

)
∞

N−2∏
a=1

a∏
i=1

a+1∏
j=1

(
u
y
(a+1)
j

y
(a)
i

; q

)
∞(

v
y
(a+1)
j

y
(a)
i

; q

)
∞

N∏
p=1

N−1∏
i=1

(
q1−α(p)

N−1vN−1 zp

y
(N−1)
i

; q

)
∞(

q1−α(p)
N vN−1 zp

y
(N−1)
i

; q

)
∞

,

(2.61)

where we have omitted prefactors coming from the ordering of the vertices to concentrate

only on the integral for the moment. Expression on the r.h.s of (2.61) is almost of the

same form as the integral in BD2×S1

FT [SU(N)] block (2.1). To complete the map we need

to impose a further restriction on the q-Toda vertex operator parameters. First of all

looking on the one-loop contribution of the vector and adjoint multiplets in the block

integral (2.1) we can see that the gauge theory parameter t related to the 3d axial

mass is identified with the t-parameter of Toda CFT deformation. Then in order to

match the contribution of the bifundamental hypers with the corresponding term in the

correlator (2.61) we need to make the following identification between the integration

variables y in the q-DF integral (2.61) and x in the holomorphic block integral (2.1):

y
(a)
i = x

(a)
i v−a. (2.62)

To identify the last product in the third line of Eq. (2.61) with the contribution of the

fundamental chiral multiplets we need

µp = q1−α(p)
N v2N−2zp ,

tµp = q1−α(p)
N−1v2N−2zp , (2.63)
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which amounts to requiring

α
(p)
N − α

(p)
N−1 = β . (2.64)

Eq. (2.64) together with the condition (2.60) completely fixes all the components of the

vertex weight vectors in terms of the last components so that all weights have the form

~α(p) = (gp − β)~1 + β~ωN−1 , (2.65)

where gp is arbitrary constant and ~ωN−1 is the highest weight vector of AN−1. The

map (2.63) give us freedom to choose gp freely. For example we can absorbe it into

the definition of the insertion points z′p = qβ−gpzp and consequently have µp = v2Nz′p.

Alternatively we can simultaneously shift of all the components of the vertex operator

weight. This operation does not affect the q-DF integral (2.54) as it only contribute

an overall factor in front of the integral which we omit anyway. So we choose to set

gp = β corresponding to vertices with fully degenerate momenta (corresponding to

simple degenerate punctures in the AGT setup):

~α(p) = β~ωN−1 . (2.66)

Finally we need to identify the FI parameters of the FT [SU(N)] theory with the

components of the initial and final momenta of q-Toda CFT α
(0)
a . This can be done by

looking at the powers of y
(a)
i in the q-DF integral (2.61) and eX

(a)
i powers in the block

integral (2.1). We arrive at the following relation:

α(0)
a − α

(0)
a+1 + 1− 2β =

Ta − Ta+1

~
− β, (2.67)

and thus

Ta = ~
(
α(0)
a + (β − 1) a

)
. (2.68)

Summarizing, the dictionary between the BD2×S1

FT [SU(N)] block (2.1) and the q-Toda block

qDF
AN−1

N+2

(
z1, . . . , zN , ~α

(0), β~ωN , . . . , β~ωN , [1, 2, . . . , N − 1], q, qβ
)

is given in Table 1. It

is important to notice here that with the choice (2.66) of the vertex operator weights

and the map of parameters specified in Table 1 the prefactor Cq
vert in the qDF integral

(2.58) simplifies drastically and reduces to:

Cq
vert →

∏
p<r

µβp

(
q
t
µr
µp

; q
)
∞(

tµr
µp

; q
)
∞

. (2.69)

As we can see ratio of q-Pochhammers in this expression exactly reproduces contribution

(2.35) of the flipping singlets into holomorphic block of FT [SU(N)] theory. However we
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BD2×S1

FT [SU(N)] Identification qDF
AN−1

N+2

Integration parameters x
(a)
i y

(a)
i = x

(a)
i v−a Screening current positions y

(a)
i

Axial mass t t = qβ Central charge parameter β

Vector masses µp µp = v2Nzp Positions of the vertex operators zp

FI parameters Ta Ta = ~
(
α

(0)
a + (β − 1)a

)
Initial state momentum vector ~α(0)

Table 1. Map between the parameter of the FT [SU(N)] holomorphic block (2.1) and the

conformal block (2.58) of the q-Toda theory.

still omit mixed Chern-Simons terms since their matching would require more delicate

calculation of conformal blocks.

To complete the discussion of Duality web I in Fig. 1 we need to comment on the

counterpart of the 3d spectral duality relating the 3d holomorphic blocks BD2×S1

FT [SU(N)]

and B̂D2×S1

FT [SU(N)] by the map (2.37). In this context the spectral duality reads:

Ĉ qD̂F
AN−1

N+2

(
ẑ1, . . . , ẑN , ~̂α

(0), β̂~ωN , . . . , β̂~ωN , [1, 2, . . . , N − 1], q, qβ̂
)

=

= C qDF
AN−1

N+2

(
z1, . . . , zN , ~α

(0), β~ωN , . . . , β~ωN , [1, 2, . . . , N − 1], q, qβ
)
. (2.70)

The parameters of the dual DF integrals are related by the spectral duality map:

β̂ = β,

α̂(0)
p =

1

~
log zp + (1− β)(N + p), (2.71)

ẑp = qα
(0)
p +(N+p)(β−1),

which swaps the coordinates of the vertex operators with the momenta. The prefactor

C = C
(
z1, . . . , zN , ~α

(0), β
)

(and similarly Ĉ) is given by the product of the omitted

factor in front of integral in the q-Toda conformal block (2.58) and F−1(q, t, ~τ) from

the holomorphic block (2.1).

3 Duality web II: FT [SU(N)] and its spectral dual via Higgsing

In this section we will describe how to obtain the partition function of the 3d N = 2

FT [SU(N)] gauge theory on R2
q × S1 by Higgsing the 5d N = 1 square linear quiver

theory on the Ω-background R4
q,t × S1.

We consider the 3d-5d version of the setup of [14, 27, 61, 62]. Physically the 3d

theory lives on the worldvolume of the vortices appearing in the Higgs phase of the
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5d theory. Using a Type IIB brane setup with NS5 and D5 branes to engineer the 5d

linear quiver theory we can realise the 3d vortex theory as the low energy theory on

the D3 branes stretched between NS5 and D5 branes. The spectral self-duality of the

FT [SU(N)] theory descends from IIB S-duality which swaps NS5 and D5 branes.

3.1 5d instanton partition function, Higgs branch and the vortex theory

Consider the 5d N = 1 square quiver gauge theory with gauge group U(N)N−1 in

Ω-background. An example of such theory for N = 4 is depicted in Fig. 5. The

parameters of the theory are:

1. Vacuum expectation values (vevs) of the adjoint scalar fields. We denote the

exponentiated12 vev of the i-th diagonal component of the adjoint scalar of the

a-the gauge group by a
(a)
i , i = 1, . . . , N , a = 1, . . . , N − 1.

2. Couplings Λa, a = 1, . . . , (N − 1) of the gauge groups.

3. Masses mi (resp. m̄i) of the fundamental (resp. antifundamental) hypermultiplets

coupled to the first (resp. the last) gauge groups in the linear quiver.

4. Bifundamental masses m
(a,a+1)
bif . Since we consider the U(N) case these param-

eters could be eliminated by shifting the ratio of trace parts
∏N

i=1
a
(a)
i

a
(a+1)
i

→∏N
i=1

a
(a)
i

m
(a,a+1)
bif a

(a+1)
i

. However, we will keep them as separate parameters to make

the formulas more symmetric.

5. Parameters q and t of the Ω-deformation.

U(4) U(4) U(4)4 4

a
(1)
i a

(2)
i a

(3)
i

mi m̄i

m
(12)
bif m

(23)
bif

Λ1 Λ2 Λ3

Figure 5. 5d linear “square” quiver gauge theory with gauge group U(4)3. a
(a)
i are the

exponentiated vevs of the adjoint scalars. m
(a,a+1)
bif , mi, m̄i and Λ(a) are the exponentiated

masses and gauge couplings.

12The exponentiated vev (resp. mass, coupling) is related to the physical vev A (resp. mass M ,

complexified coupling T ) by the formula a = eA (resp. m = eM , Λ = eT ). The masses M and vevs A

in these formulas are made dimensionless, by measuring them in units of inverse radius R−1 of the

compactification circle S1.
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The Ω-background partition function of the theory is given by (the 5d version of)

the instanton partition function [1]. It is the product of three factors: the classical piece

Z5d
cl , the one-loop determinant Z5d

1−loop and the instanton part Z5d
inst, of which we write

down explicitly only the last one:

Z5d
inst(a

(a)
i ,mi, m̄i,m

(a,a+1)
bif ,Λa) =

∑
~Y (1),...,~Y (N−1)

N−1∏
a=1

Λ|
~Y (a)|
a ×

×zfund(~m,~a(1), ~Y (1))

∏N−2
a=1 zbif(m

(a,a+1)
bif ,~a(a+1),~a(a), ~Y (a+1), ~Y (a))∏N−1
a=1 zvect(~a(a), ~Y (a))

zfund( ~̄m,~a(N−1), ~Y (N−1))

(3.1)

where ~Y (a), a = 1, . . . , (N − 1) each denote the N -tuple of Young diagrams, ~Y (a) =

{Y (a)
1 , . . . , Y

(a)
N } and

zfund(~m,~a, ~Y ) =
N∏
r=1

N∏
s=1

∏
(i,j)∈Yr

(
1− ar

ms

qj−1t1−i
)
, (3.2)

zfund(~m,~a, ~Y ) =
N∏
r=1

N∏
s=1

∏
(i,j)∈Yr

(
1− ms

ar
q1−jti−1

)
, (3.3)

zbif(mbif ,~a,~b, ~Y , ~W ) =
N∏
r=1

N∏
s=1

∏
(i,j)∈Yr

(
1− ar

mbifbs
qYr,i−jtW

T
s,j−i+1

)
× (3.4)

×
∏

(k,l)∈Ws

(
1− ar

mbifbs
q−Ws,i+j−1t−Y

T
r,j+i

)
, (3.5)

zvect(~a, ~Y ) = zbif(1,~a,~a, ~Y , ~Y ). (3.6)

We are now going to show how the instanton partition functions can be reduced via

Higgsing to the 3d vortex partition function for the FT [SU(N)] theory. As mentioned

in the Introduction, Higgsing a 5d partition function typically produces the partition

function of a coupled 5d-3d system describing a codimension-two surface operator

coupled to the bulk theory. Here we are interested in the case where the 5d bulk theory

is trivial, consisting only of a bunch of decoupled hypermultiplets and so rather than

reducing to a coupled system, the Higgsing directly yields the 3d vortex theory.

FT [SU(2)] case

Let us start with the simplest example of the square U(2) theory, i.e. the U(2) gauge

theory with two fundamental and two antifundamental multiplets. The Higgs branch
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touches the Coulomb branch at the point ai = mi, i = 1, 2. The theory on the Higgs

branch contains nonabelian vortex strings with worldvolumes spanning13 R2
q × S1 ⊂

R4
q,t × S1. The 3d theory on charge M vortices is the N = 2 U(M) theory with

• adjoint multiplet with mass t,

• two fundamental multiplets with masses µi = mi,

• two antifundamental multiplets with masses µ̄i
q
t

= m̄i.

When the 3d FI parameter is turned on the 3d theory is on the Higgs branch and the

gauge group is broken to U(M1)× U(M2) with M1 +M2 = M .

The vortex theory is actually dual to the theory at certain discrete points on the

Coulomb branch without any vortices [14]. In particular the 5d theory on the Higgs

branch with U(M1)× U(M2) vortex is equivalent to the theory on the Coulomb branch

with

ai = mi t
Mi , i = 1, 2. (3.7)

Indeed for ai = mi t
Mi the sum over Young tableaux in the instanton partition function

Z5d
inst (3.1) truncates so that only the diagrams Yi of length l(Yi) ≤Mi contribute. The

surviving diagrams correspond to the values of the 3d adjoint scalar fields fixed under

the localization, which in the IR are diagonal M1 ×M1 and M2 ×M2 matrices. The

instanton contributions for these diagrams indeed match those of the vortex expansion

Z3d
vort of the 3d theory [27] with the following dictionary:

5d square U(2) 3d vortex theory

coupling Λ τ FI parameter

fundamental masses mi µi fundamental masses

antifundamental masses m̄i µ̄i = q
t
m̄i antifundamental masses

Coulomb parameters ai = mit
Mi U(M1)× U(M2) rank of the gauge groups

Ω-parameter t t adjoint mass

Ω-parameter q q Ω-parameter

To obtain the FT [SU(2)] vortex partition functions one needs to further tune the param-

eters of the 3d/5d setup choosing M1 = 1 and M2 = 0 and setting the antifundamental

masses to m̄i = t2

q
mi (consistent with the cubic superpotential of the N = 2∗ theory).

13Of course, since the Ω-background localizes all the vortices at the origin of R2
q , one can equivalently

view them as vortices spanning R2
t × S1 ⊂ R4

q,t × S1. The equivalence between the two viewpoints

gives rise to the famous Langlands correspondence [63].
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FT [SU(N)] case

The Higgsing procedure described above can be easily extended to the FT [SU(N)]

case which can be obtained from the square U(N)N−1 5d by tuning the masses and the

Coulomb parameters to the following values:

a
(1)
1 = m1t,

a
(1)
2 = m2,

a
(1)
3 = m3,

...

a
(1)
N−1 = mN−1,

a
(1)
N = mN ,

a
(2)
1 = m1t,

a
(2)
2 = m2t,

a
(2)
3 = m3,

...

a
(2)
N−1 = mN−1,

a
(2)
N = mN ,

· · ·

a
(N−1)
1 = m1t,

a
(N−1)
2 = m2t,

a
(N−1)
3 = m3t,

...

a
(N−1)
N−1 = mN−1t,

a
(N−1)
N = mN ,

m̄1 = m1
t2

q
,

m̄2 = m2
t2

q
,

m̄3 = m3
t2

q
,

...

m̄N−1 = mN−1
t2

q
,

m̄N = mN
t2

q
,

(3.8)

and m
(r,r+1)
bif = 1 for all r. After this specialization the instanton sum in (3.1) over

N -tuples of Young diagrams ~Y (a) truncates: the only surviving terms are those with
~Y (a) of the following form:

Y
(1)

1 = [k
(1)
1 ],

Y
(1)

2 = ∅,
Y

(1)
3 = ∅,

...

Y
(1)
N−1 = ∅,
Y

(1)
N = ∅,

Y
(2)

1 = [k
(2)
1 ],

Y
(2)

2 = [k
(2)
2 ],

Y
(2)

3 = ∅,
...

Y
(2)
N−1 = ∅,
Y

(2)
N = ∅,

· · ·

Y
(N−1)

1 = [k
(N−1)
1 ],

Y
(N−1)

2 = [k
(N−1)
2 ],

Y
(N−1)

3 = [k
(N−1)
3 ],

...

Y
(N−1)
N−1 = [k

(N−1)
N−1 ],

Y
(N−1)
N = ∅,

(3.9)

where the integers k
(a)
i satisfy the constraints (2.17). We then see that the instanton

partition function reduces exactly to the vortex series (2.16).

3.2 (p, q)-webs, topological strings and the geometric transition

We can realize 3d and 5d theories in terms of (p, q)-brane webs in Type IIB string

theory [33]. The (p, q)-brane web S for the U(N)N−1 theory consists of N NS5 branes

(vertical) and N D5’ branes (horizontal)14 as shown in Fig. 6, a). The NS5 and D5’

branes fuse to form (1, 1)-branes, which are diagonal in Fig. 6. The tensions of the

branes are balanced regardless of their relative positions, therefore the system has

moduli, corresponding to the parameters of the gauge theory. The 5d theory obtained

in this way lies on the Coulomb branch, so some of the brane moduli are Coulomb

parameters. Others correspond to masses and gauge couplings. Concretely, changing

the Coulomb moduli means changing the positions of the internal branes, while fixing

the semi-infinite ones.
14We can take the NS5 branes extending in directions 012789 and the D5’ in 012478.
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NS5
a) b)

D3

D3

D5’

D5’

NS5 NS5

τ1
τ2

µ1

µ2

D3

D3

D5’

D5’

NS5 NS5

λ

µ1

µ2

t

U(1) 2

τ1
τ2

µi

tµi

c) d) e)

Figure 6. a) (p, q)-brane web S, corresponding to the 5d U(2) square gauge theory. The

picture can also be viewed as the toric diagram of the CY. Compactifying M-theory on this

CY one arrives at the same gauge theory. b) One NS5 brane is separated in the transverse

direction, so that the gauge theory goes onto the Higgs branch. The dashed lines denote two

stacks of M1 and M2 D3 branes respectively stretching between the NS5 and D5’ branes. One

can also view this picture as describing the CY background after the geometric transition. c)

The brane setup corresponding to the 3d FT [SU(2)] theory where M1 = 1 and M2 = 0. The

masses µ1,2 and FI parameters τ1,2 of the gauge theory are encoded in the positions of the

branes as shown. Notice that the second NS5 brane is also detached from the web and a single

D3 is stretched between it and the second D5’ brane. This imposes the condition µ̄i = tµi.

d) Another projection of the brane setup c). The distance between the NS5 branes in the

transversal directions λ corresponds to the coupling constant of the 3d theory which does not

enter the holomorphic block. e) The 3d FT [SU(2)] gauge theory obtained form the brane

setup c), d). The deformation parameter t giving mass to the adjoint multiplet originates

from the Ω-background in the R4
q,t part of the 10d geometry.
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Where is the Higgs branch in the brane setup? The origin of the Higgs branch

appears when at least one NS5 brane does not fuse with any of the D5’ branes passing

vertically through the whole picture. The NS5 brane can then be separated from the

rest of the (p, q)-web in the directions perpendicular to the plane of the picture, as

shown in Fig. 6, b). The position of the NS5 brane in these directions corresponds to the

Higgs branch moduli. The vortex strings appearing in the Higgs phase of the 5d theory

correspond to the D3 branes stretching between the D5’ branes and the separated NS5

brane. 3d FT [SU(N)] theory is obtained by further tuning the positions of the branes

as shown in Fig. 6.

Notice that we need also to detach the last NS5 brane from the web and stretch

a single D3 between it and one of the D5’ brane. This imposes the condition on the

fundamental chiral masses µ̄i = tµi. Notice the resulting diagonal pattern of the D3

branes.

To find the matter content of the 3d theory on the D3 branes it is instructive to

look at a different projection of the brane setup shown in Fig. 6, d). The D3 segment

between the two NS5 branes supports 4d U(1) theory, which in the IR becomes 3d, since

the length of the segment is finite, while open strings stretching between D3 branes

across NS5 branes give rise to bifundamental filelds. The flipping fields arise, because

the D3 branes can move along the five-branes in the directions perpendicular to those

drawn in Fig. 6.

The distance between the D5’ branes µ1
µ2

determines the masses of the fundamental

multiplets while the distance between the NS5 branes in the “Coulomb” direction τ1
τ2

gives the FI parameter of the 3d FT [SU(2)] gauge theory.

We can now observe that the brane web in Fig. 6, c) under the action of Type

IIB S-duality which exchanges the NS5 and D5’ branes, thus effectively taking the

mirror image along the diagonal, is sent into an identical web diagram with mass and

FI parameters exchanged. This is due to two properties.

1. We have N NS5 and N D5’ branes. This is the reason why we call it square

theory.

2. The number of D3 branes sitting at each intersection is tuned so that the whole

collection is symmetric along the diagonal.

This construction indicates that the 3d spectral self-duality of the FT [SU(N)]

theory follows from Type IIB S-duality.

We can see this very explicitly if we transform our Type IIB (p, q)-brane web into

a purely geometric background of M-theory without any five-branes (this technique
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is known as geometric engineering of gauge theories). The background is a toric CY

three-fold S with toric diagram copied after the (p, q)-brane web. One can then compute

the partition function of M-theory on S × R4
q,t × S1 by computing the refined (with

(q, t)-deformation) topological string partition function Ztop[X] [64, 65].

The positions of the five-branes become complexified Kähler parameters of the CY

S. It will be natural for us to trade the Kähler parameters of the compact two-cycles

on CY for the so-called spectral parameters living on the edges of the diagram. They

are defined so that for two parallel lines on the diagram with spectral parameters z and

w the Kähler parameter of the two-cycle between the lines is given by z
w

:

z
w

def
=

z w

(3.10)

and are conserved at the brane junctions:

u

z

uz

(3.11)

The toric diagram of the CY background S corresponding to the 5d U(4)3 square

gauge theory is shown in Fig. 7 (we use the shorthand notation for the resolved conifold

pieces of the geometry, as shown in b)). The Higgs branch of the 5d gauge theory appears

when all the conifold resolutions along one of the vertical lines become degenerate,

i.e. their Kähler parameters vanish. In this case the CY can be deformed, so that

each crossing looks like a deformed conifold geometry, locally a T ∗S3. Resolved and

deformed backgrounds of (refined) topological strings are related by the geometric

transition [66, 67], i.e. at quantized values of the conifold Kähler parameter Q =
√

q
t
tN

the resolution is equivalent to the deformed geometry with a stack of N Lagrangian

branes wrapped over the compact three-cycle. The background after the geometric

transition can be illustrated by Fig. 6 b) and c) with dashed lines now playing the

role of Lagrangian branes. Quantized values of the Kähler parameters correspond to

the points (3.7) on the Coulomb branch of the 5d gauge theory, while the deformed

geometry with Lagrangian branes corresponds to 5d theory on the Higgs branch with a

collection of vortices, on which the 3d FT [SU(N)] theory leaves. We call the Higgsed
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version of CY S by S (so that S represents a particular point in the Kähler moduli

space of S). In this way, geometric transition explains the Higgsing procedure described

above.

m1 a
(1)
1 a

(2)
1 a

(3)
1 m̄1

m2 a
(1)
2 a

(2)
2 a

(3)
2 m̄2

m3 a
(1)
3 a

(2)
3 a

(3)
3 m̄3

m4 a
(1)
4 a

(2)
4 a

(3)
4 m̄4

1 Λ1 Λ1Λ2 Λ1Λ2Λ3

QL

QR

QD

QD
QL

QR

t
q

t q
def
=

QL QR

QD

QD
QL

QR

a) b)

Figure 7. a) The toric diagram S producing the square gauge theory from Fig. 5. The

labels of the lines correspond to the spectral parameters on the toric diagram and encode the

parameters of the gauge theory. b) The shorthand notation for the crossings: black circles

denote the resolved conifold geometries with general Kähler parameters. Notice that the

spectral parameter on the upper vertical leg is determined by the “conservation law”.

We can then calculate the closed topological string partition Ztop(~µ, ~τ , q, t) for the

CY background S with tuned Kähler paramters in Fig. 8 using the refined topological

vertex [64, 65] or using the techniques of [68, 69] and check that it reproduces the vortex

plus one loop factor of the holomorphic block BD2×S1

FT [SU(N)](~µ, ~τ , q, t):

∏
i<j

(
q
t
µi
µj

; q
)
∞(

t µi
µj

; q
)
∞

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t) = Ztop(~µ, ~τ , q, t) (3.12)

where we have omitted an overall constant independent of ~µ and ~τ in Ztop. The first

factor in the l.h.s. of Eq. (3.12) is the contribution of the flipping fields (it is essentially

f(~µ, q, t)−1 up to a power factor).

Notice how the two sides of Eq. (3.12) behave in the unrefined limit t = q. The

topological string partition function for t = q simplifies, and in particular empty crossings

become really non-interacting, so that the whole diagram in Fig. 8 a) splits into a

product of non-interacting resolved conifold pieces, so that Ztop(~µ, ~τ , q, q) = 1. This

agrees with the behavior of the one-loop and vortex partition functions we have observed

in Eqs. (2.28), (2.29).
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=
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t q
def
=

QL
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=
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NS5
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Figure 8. a) The toric diagram S for the higgsed gauge theory, i.e. for parameters tuned

as in Eq. (3.8). We have rotated the picture compared to Fig. 6 by π
2 to aid explicit refined

topological string computations. b) The “empty crossing” denotes the fully degenerate refined

conifold amplitude. c) The “higgsed crossing” denote refined conifold amplitude corresponding

to the geometric transition of the deformed geometry with a single brane wrapping S3.

3.3 Fiber-base and spectral duality

Finally we discuss how the spectral self-duality of the FT [SU(N)] holomorphic block

appears from the geometric engineering perspective. The CY background S in Fig. 8 is

invariant under the action of the fiber-base duality (reflection along the diagonal) which

swaps fiber and base Kähler parameters or, equivalently, exchanges µi with τi. So is the

corresponding refined topological string partition function which satisfies15:

Ztop(~µ, ~τ , q, t) = Ztop(~τ , ~µ, q, t) . (3.13)

15Notice that in the brane web there is a so-called preferred direction. When the mirror image is

taken the direction is modified but the closed string amplitudes are invariant under this change. As we

discuss in the next section this can be understood in the algebraic approach to the vertex. For open

string amplitudes the situation is more subtle, see [41].
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Notice that the parameters q and t of the refined topological string are left invariant by

the action of the fiber-base duality.

Considering the Higgsing relation (3.12) we see that Eq. (3.13) implies

∏
i<j

(
q
t
µi
µj

; q
)
∞(

t µi
µj

; q
)
∞

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t) =

=
∏
i<j

(
q
t
τi
τj

; q
)
∞(

t τi
τj

; q
)
∞

Z
3d, (α0)
1−loop (~τ , ~µ, q, t)Z

3d, (α0)
vort (~τ , ~µ, q, t) . (3.14)

We can then easily check that the contact terms in f(~µ, q, t) satisfy the following relation

e−(1−2β)
∑N
i=1(i−1)MiZ

3d, (α0)
cl (~µ, ~τ , q, t) = e−(1−2β)

∑N
i=1(i−1)TiZ

3d, (α0)
cl (~τ , ~µ, q, t). (3.15)

Hence we conclude that

BD2×S1

FT [SU(N)] (~τ , ~µ, q, t) =
∏
i<j

(
q
t
µi
µj

; q
)
∞(

t µi
µj

; q
)
∞

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t) =

=
∏
i<j

(
q
t
τi
τj

; q
)
∞(

t τi
τj

; q
)
∞

Z
3d, (α0)
1−loop (~τ , ~µ, q, t)Z

3d, (α0)
vort (~τ , ~µ, q, t) = BD2×S1

FT [SU(N)] (~µ, ~τ , q, t) (3.16)

This is one of our main results: we have an explicit realization of how the 3d spectral

duality relation (2.37) follows from the fiber-base self-duality of the CY background S.

We will provide more examples of this idea in [23].

3.3.1 Symmetries of the blocks: the Ding-Iohara-Miki algebra approach

In this section we briefly discuss the algebraic version of the topological vertex for-

malism [70] based on the representation theory of Ding-Iohara-Miki (DIM) algebra

Uq,t(
̂̂
gl1) [71, 72]. This algebra is a central extension and quantum deformation of the

algebra of double loops in C, i.e. of the polynomials xnym, n,m ∈ Z. The deformation

parameters q and t correspond to the parameters of the Ω-background in the 5d gauge

theory, or to the parameters of the N = 2 deformation of the 3d N = 4 T [SU(N)]

theory. The algebra is symmetric under any permutation of the triplet of parameters

(q, t−1, t
q
). However, the representations retain only part of this symmetry. The simplest

representation is the representation on the Fock space F with convenient choice of basis

given by Macdonald polynomials M
(q,t)
Y (a−n)|vac〉. It (along with its tensor powers)
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corresponds to the action of the algebra on the equivariant cohomology of instanton

moduli space of the 5d gauge theory. The representation is invariant under the exchange

of q and t−1, provided one maps the creation operators a−n into −1−qn
1−tn a−n. In particular,

in the basis of Macdonald polynomials the symmetry corresponds to the transposition

of the Young diagram Y :

M
(t−1,q−1)

Y T (a−n)|vac〉 = M
(q,t)
Y

(
−1− qn

1− tn
a−n

)
|vac〉 (3.17)

From physical point of view this symmetry is natural, since q and t−1 are two equivariant

parameters acting along two orthogonal planes in the R4
q,t.

In the algebraic construction of refined topological strings each leg of the brane web

corresponds to a Fock representation. The direction of the leg corresponds to vector

of two central charges (k1, k2) of the DIM algebra. Thus we call Fock representations

vertical or horizontal depending on the value of the central charges. Brane junction

corresponds to DIM algebra intertwining operator acting from the tensor product of two

Fock spaces (e.g. vertical and horizontal) into a single Fock space (e.g. diagonal) or vice

versa. Gluing of vertices corresponds to the composition of intertwiners. Spectral duality

of the brane web corresponds to the Miki automorphism of the DIM algebra, which in

particular takes the mirror image of the central charge vector (k1, k2) 7→ (k2,−k1). Mirror

image of charge vectors implies mirror image of all the brane web. Miki automorphism

does not change q and t parameters. Thus, we conclude that partition function of

refined topological string corresponding to the brane web in Fig. 8, a) is invariant under

the symmetry (3.13).16

When composing two intertwiners (or gluing two vertices in the brane web) we

need to perform the sum over intermediate states belonging to the Fock representation,

i.e. over all Young diagrams Y . However, for the specific choice of spectral parameters

corresponding to the higgsed theory, only a subset of diagrams yields nonzero matrix

elements. In the setup shown in Fig. 8. Those are diagrams with at most one column,

i.e. Y = [k]. The sum over these diagrams corresponds to the sum over k
(a)
i in the

vortex partition function (2.16). The subspace of the Fock representation F retains

larger symmetry of the original DIM algebra. In particular it turns out that, besides

the standard q ↔ t−1 symmetry, the symmetry t↔ q
t

is also secretly preserved in the

partition function. A simple example of such situation occurs in the basis of Macdonald

16There is a subtle part in this argument, because the definition of the intertwiner requires the choice

of a coproduct in the algebra. It turns out that this choice amounts to the choice of a direction in

the brane web — the so-called preferred direction. When the mirror image is taken the direction is

modified. However, different directions are related by a Drinfeld twist and give the same answer for all

closed string amplitudes, in particular for the partition function.
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polynomials. The polynomials corresponding to totally antisymmetric reps do not

depend on q and t, so they do not feel the exchange of t and q
t
. We plan to return to

this point in the future.

4 Duality web III

In this section we study the Duality web III depicted in Fig. 3.

4.1 2d GLSM, Hori-Vafa dual and Toda blocks

On the gauge theory side (face 3) we consider the limit where we shrink the S1 circle

and reduce the FT [SU(N)] theory from D2 × S1 to the cigar D2. This corresponds to

taking q = e~ → 1 since ~ = Rε where R is the circle radius and ε is the equivariant

parameter rotating the cigar which we keep fixed (and indeed can set its numerical

value to one).

As we have already mentioned in the Introduction there are various ways to take

the 2d limit, here we consider the limit which is the ordinary dimensional reduction

of the 3d FT [SU(N)] theory down to the theory with the same matter content in 2d.

This limit is called the Higgs limit in [9, 44], since the 3d FI parameters are large and

lift the Coulomb branch while the matter fields remain light.

In our conventions (where the 3d real mass parameters are dimensionless as they

have already been rescaled by R), this limit is implemented by taking Ta finite as ~→ 0

and

µj = eMj ≡ e~fj = qfj , t = qβ . (4.1)

We identify fj and β as the (dimensionless) twisted mass parameters for the SU(N)×
U(1)A symmetries. We will keep all these deformations finite to ensure that the theory

has N isolated massive vacua.

When we take the limit on the partition functions we also have to consider possible

rescaling of the integration variable which can single out the contribution for vacua

located at infinite distances. In the Higgs limit case the vacua remain at finite distances

which corresponds to taking:

x
(a)
i = eX

(a)
i = e~w

(a)
i = qw

(a)
i . (4.2)

With this parameterisation, using the following limit discussed in the Appendix C

lim
q→1

(qx; q)∞
(q; q)∞

= (−~)1−x 1

Γ(x)
, (4.3)
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we can take the q → 1 limit of the block BD2×S1

FT[SU(N)] and find:

lim
q→1
BD2×S1

FT[SU(N)] = ~
N(N−1)(β−1)

2 (−1)
1
2
N(N−1)β

N−1∏
a=1

e(1−β)a2(Ta+1−Ta)

N∏
k<l

Γ(fk − fl + β)

Γ(fk − fl + 1− β)
×

∫ N−1∏
a=1

a∏
i=1

dw
(a)
i

N−1∏
a=1

a∏
i=1

ew
(a)
i (Ta−Ta+1)

N−1∏
a=1

a∏
i,j

Γ
(
β + w

(a)
i − w

(a)
j

)
a∏
i 6=j

Γ
(
w

(a)
i − w

(a)
j

) ×

×
N−2∏
a=1

a∏
i=1

a+1∏
j=1

Γ
(
w

(a+1)
j − w(a)

i

)
Γ
(
β + w

(a+1)
j − w(a)

i

) N∏
p=1

N−1∏
i=1

Γ
(
fp − w(N−1)

i

)
Γ
(
β + fp − w(N−1)

i

) =

∼ ~
N(N−1)(β−1)

2 BD2

FT[SU(N)] . (4.4)

The divergent ~ prefactor in the above expressions is the leading contribution to the

saddle point and we will have to match it to analogue divergence arising from the limit

of the dual block. Then we identified up to a contact term the D2 partition functions

BD2

FT[SU(N)] of the N = (2, 2) FT [SU(N)] theory which can be written down following

[73, 74]. The chiral multiplets contributions to the partition function are now given by

Gamma functions which sit in the numerator or in the denominator depending whether

they correspond to Neumann or Dirichlet boundary conditions as in the 3d case. Our

symmetric choice of the boundary condition for the chiral multiplets corresponds to a

particular boundary condition.

On the spectral dual side, where the FI and mass parameters are swapped the limit

we have just described acts very differently and it corresponds to the so called Coulomb

limit. Indeed now the chirals are massive and the Higgs branch is lifted. As before

however we keep all the deformations parameters non zero so that the 2d theory still

has isolated vacua. This time however the vacua are at infinity. In our convention this

means that the 3d Coulomb brach parameters x
(a)
i = eX

(a)
i stay finite as ~→ 0.

In this case we will use the following property of q-Pochhammer symbols

lim
q→1

(qax; q)∞
(qbx; q)∞

= (1− x)b−a , (4.5)

which is proven in the Appendix C and find that:

– 38 –



lim
q→1
B̂D2×S1

FT [SU(N)] = (−~)
N(N−1)

2
(β−1)Γ(β)

N(N−1)
2 e(2β−1)

∑N
a=1(a−1)Ta

N∏
k<l

(1− τk
τl

)2β−1×

×
∫ N−1∏

a=1

a∏
i=1

dx
(a)
i

x
(a)
i

N−1∏
a=1

a∏
i=1

(
x

(a)
i

)f (a)−f (a+1)−β N−1∏
a=1

a∏
i 6=j

(
1−

x
(a)
j

x
(a)
i

)β

×

×
N−2∏
a=1

a∏
i=1

a+1∏
j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β N∏
p=1

N−1∏
i=1

(
1− τp

x
(N−1)
i

)−β
∼

∼ ~
N(N−1)(β−1)

2 D̂F
AN−1

N+2 . (4.6)

We notice first of all that the divergent prefactor in the above expression matches

the one we found by taking the limit on the spectral dual side, which guarantees that

we are comparing the right set of vacua on both sides of the duality.

In the last equality we identified the integral block D̂F
AN−1

N+2 of (N + 2) vertex oper-

ators in AN−1 Toda CFT with screening charges Na = a and the following identification

of parameters:

~̂α(p) = β~ωN−1 , α̂(0)
a = f (a) + (1− β)a , ẑp = τp , β̂ = β . (4.7)

As before we put ∼ in (4.6) because we omitted the overall zp dependent factor in the

Toda conformal block (2.54)17.

Thus we have obtained the red diagonal link in the web 3 which relates the 2d gauge

theory to the CFT block. Notice that the map (4.7) between the parameters of the

gauge theory and Toda block is consistent with the ~→ 0 limit of the previously derived

gauge/CFT correspondence map (see Table 1) after the spectral duality transformation

τp ↔ µp, β → β.

To make contact with the Hori-Vafa dual theory of twisted chiral multiplets which

we expect to find on the bottom right corner of face 3 in Fig. 3 we simply need to

exponentiate the integrand I in eq. (4.6) as I = exp(log I) and identify log(I) with W
the twisted superpotential contribution to the D2 partition function of the Hori-Vafa

dual theory. The dual theory also has N(N − 1)/2 un-gauged chiral multiplets which

yield the Γ(β) factors.

17The prefactor
∏N
k<l

(
1− τk

τl

)2β−1
in Eq. (4.6) has a different power of β compared to the contribu-

tion we would get from the normal ordering of vertices from Eq. (2.44). This is due to the fact that, as

we have mentioned earlier, our deformed vertices naturally incorporate the contribution of the central

(also called the U(1)) part, whereas the conventional undeformed Toda vertices do not.
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Notice that we keep all the FI and the twisted mass deformations on. This is

necessary for the convergence of the integrals (and to relate them to CFT) so the match

of the D2 partition functions is a check of the duality for the mass deformed theories

with isolated vacua. As recently discussed in [8, 9] it is quite subtle to understand what

happens when these deformations are lifted and generically we are not guaranteed to

find a proper IR duality for massless theories.

4.2 2d GLSM and the d-Virasoro algebra

Finally the remaining corner of face 2, labelled dDF
AN−1

N+2 is to be interpreted as a

conformal block of an unconventional limit of the q-WN algebra. Here we briefly sketch

the construction of this theory restricting ourselves to the case N = 2. We then start

from the q-Virasoro algebra which is generated by the current T (z) satisfying the

quadratic relation:

f
(w
z

)
T (z)T (w)− f

( z
w

)
T (w)T (z) = −(1− q)(1− t−1)

1− q
t

(
δ×

(q
t

w

z

)
− δ×

(
t

q

w

z

))
(4.8)

where

f(x) = exp

[∑
n≥1

(1− qn)(1− t−n)

1 +
(
q
t

)n xn

n

]
=

(
qx; q

2

t2

)
∞

(
t−1x; q

2

t2

)
∞

(1− x)
(
q2

t
x; q

2

t2

)
∞

(
q
t2
x; q

2

t2

)
∞

(4.9)

and δ×(x) =
∑

n∈Z x
n is the multiplicative delta-function. One can understand δ×(x) as

the delta function on the unit circle, where x = eiφ, since∑
n∈Z

einφ =
∑
m∈Z

δ+(φ− 2πm),

and δ+(u) is the standard (additive) Dirac delta delta-function.

The q-Virasoro algebra in the familiar limit q = e~ → 1 and t = qβ with fixed β

reduces to the Virasoro algebra. This can be seen by taking the above limit in eq. (4.8)

keeping fixed also the positions of the currents z and w. In this case one recovers the

quadratic relation for the ordinary Virasoro algebra. The current T (z) also reduces to

the Virasoro current L(z):

T (z) = 2 + β~2

(
z2L(z) +

1

4

(√
β − 1√

β

)2
)

+ . . . (4.10)

We can also take an unconventional limit of the quadratic relation (4.8) where

positions z and w scale as powers of q:

z = qu, w = qv, (4.11)
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and the current t(u) = limq→1 T (qu) remains finite then the relations of the algebra

become

g(v − u)t(u)t(v)− g(u− v)t(v)t(u) = − β

1− β
(δ+(v − u+ 1− β)− δ+(v − u− 1 + β))

(4.12)

where the structure function becomes

g(u) =
2(1− β)

u

Γ
(
u+2−β
2(1−β)

)
Γ
(
u+1−2β
2(1−β)

)
Γ
(

u+1
2(1−β)

)
Γ
(

u−β
2(1−β)

) . (4.13)

The main effect of the limit is that the q-Pochhammer symbols in the definition of the

q-Virasoro structure function (4.9) turn into Euler gamma functions. Essentially this

algebra, which we will call d-Virasoro algebra, is the additive analogue of the q-Virasoro

algebra.

We claim that conformal blocks of the d-Virasoro algebra have the DF representation

which coincides with the GLSM localization integrals. Moreover, these blocks are spectral

dual to the ordinary CFT conformal blocks, so that the positions of the vertex operators

in d-Virasoro become momenta in the dual CFT and vice versa.

The algebra (4.12) can be bosonized as follows. We express the current as:

t(u) = Λ1(u) + Λ2(u), (4.14)

where

Λ1(u) = eQ̃ (g(u))P̃ : exp
[∑
n≥1

1

n
c−n (un − (u− β)n)−

−
∑
k≥0

∑
n≥1

1

n
cn(−1)k

(
(u− (1− β)k)−n − (u− 1− (1− β)k)−n

)]
: , (4.15)

Λ2(u) = e−Q̃ (g(u))−P̃ : exp
[
−
∑
n≥1

1

n
c−n ((u+ β − 1)n − (u− 1)n) +

+
∑
k≥0

∑
n≥1

1

n
cn(−1)k

{
(u+ β − 1− (1− β)k)−n − (u+ β − 2− (1− β)k)−n

}]
:

(4.16)

and the generators cn, Q̃ and P̃ obey the Heisenberg algebra. Notice that the sums over

k in the exponentials converge for generic u.
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The screening current commuting with the generator t(u) up to total difference is

given by

s(x) = eQ̃+Q

(
Γ(β − u)Γ(1− u)

Γ(−u)Γ(1− β − u)

)P̃
eβxP : exp

[
−
∑
n≥1

un

n
c−n+

+
∑
n≥1

∑
k≥0

1

n
cn
{

(u− k)−n − (u− β − k)−n + (u+ β − 1− k)−n − (u− 1− k)−n
}]

:

(4.17)

where we have introduced an additional pair of zero modes P and Q, which commute

with the Heisenberg algebra formed by P̃ , Q̃ and cn.

We can immediately check that the normal ordering of the screening currents

correctly reproduces the gamma function measure of the GLSM integral measure:18

n∏
i=1

s(wi) = :
n∏
i=1

s(wi) :
∏
i<j

Γ(wj − wi + β)Γ(wj − wi + 1)

Γ(wj − wi)Γ(wj − wi + 1− β)
=

= :
n∏
i=1

s(wi) :
∏
i<j

sin(π(wi − wj + β))

sin(π(wi − wj))
∏
i 6=j

Γ(wj − wi + β)

Γ(wj − wi)
. (4.18)

We then introduce vertex operators:

vα(x) = eαQ̃+αQ

(
Γ(−α− x)

Γ(−x)

)P̃
eαxP×

× : exp

[∑
n≥1

xn

n
c−n −

∑
n≥1

∑
k≥0

1

n
cn
{

(x− k)−n − (x+ α− k)−n
}]

: , (4.19)

and assume that the initial state |α(0)〉 of the conformal block is annihilated by P̃ and

is the eigenfunction of P :

P̃ |α(0)〉 = 0, P |α(0)〉 = α(0)|α(0)〉. (4.20)

We can then combine all the pieces and calculate our d-DF integral for (n+ 2)-point

conformal block which as expected reproduces the FT [SU(N)] partition function

18The ratio of sines in the second line of Eq. (4.18) is a periodic function with period 1 and will

factor out of the integral block. This happens for the same reason as in the q-deformed case: the

residues of the integrand which is a product of gamma functions appear in strings with period 1.
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Eq. (4.4):

dDFA1
n+2(u1, . . . , un, α(0), α(1), . . . , α(n), N, β)

def
=

def
= 〈α(∞)|vα(1)

(u1) · · · vα(n)
(un)

(∮
dw s(w)

)N
|α(0)〉 ∼

∼
∫
dNw e(α(0)+N)

∑N
i=1 wi

∏
i 6=j

Γ(wi − wj + β)

Γ(wi − wj)

N∏
i=1

n∏
p=1

Γ(wi − up)
Γ(wi − up − α(p))

. (4.21)

The Duality web in (face 4) Fig. 3 indicates that the d-DF blocks are dual to the DF

block of the ordinary Wn algebra. This is a consequence of the spectral duality for

deformed Toda correlators. In particular in the N = 2 case we have a duality between

the four-point d-Virasoro block and the 4-points ordinary Virasoro block. Notice that

while the evaluation of the DF blocks is quite intricate (even in the simple cases involving

vertices with degenerate momenta) the evaluation d-DF blocks can be performed quite

easily on contours encircling the poles of the Γ functions. One can than regard the map

of ordinary DF blocks to d-DF blocks or to GLSM partition functions as an efficient

computational strategy. We will continue this discussion in [50].

5 Conclusions and Outlook

In this work we have studied several webs of dualities for the FT [SU(N)] quiver theory:

the spectral duality, the q-deformed Dotsenko-Fateev representation and its realisation

via Higgsing. We have proven these dualities and correspondences focusing on the

D2 × S1 partition function BD2×S1

FT [SU(N)].

The main results of our paper are:

1. derivation of the 3d spectral duality for the FT [SU(N)] theory from fiber-base

duality of 5d gauge theories,

2. identification of the gauge/Toda correspondence [46–48] between the N = (2, 2)

FT [SU(N)] theory and the Dotsenko-Fateev block with (N + 2) vertex operators

in AN−1 Toda CFT as a limit of our 3d spectral duality.

Our results open up a vista full of possible directions for future research. Below

we propose a number of projects which can provide better understanding and further

expand our conjectures.

First of all in our paper we have focused on the FT [SU(N)] theory, however via

Higgsing, we can generate infinitely many 3d spectral dual pairs (some examples will
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be given in [23]). For each of them we could construct duality webs similar to those

considered in above. In particular, by taking the q → 1 limits we should obtain

pairs of 2d GLSMs and Dotsenko-Fateev blocks related by the standard GLSM/CFT

correspondence.

The duality web III shown in Fig. 3 has two more corners which we have not

discussed much in our paper. One corner contains partition function BD2

LG of the Landau-

Ginzburg theory on D2. According to the logic of the duality web III it should be

connected to the DF integral in Toda CFT by simple identification of the parameters.

However at the moment this interesting connection between two seemingly distinct

objects seems not completely obvious.

Another corner of the web contains what we called dDF
AN−1

N+2 integrals. These

integrals correspond to conformal blocks with (N + 2) primary vertex operators of the

d-WN algebra. In Sec.4 we have described this algebra for the case of N = 2, wrote

down its bosonization and conformal blocks. It would be interesting to generalize this

construction to the case of d-WN algebra with general N and study its properties and

possible relations to integrable models. We plan to do it in [50].
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A Partition function on D2 × S1

In this appendix we quickly record the steps to obtain the holomorphic block integral

for the T [SU(N)] theory from the factorisation of the S3
b partition function. For details

and notation we refer the reader to [18, 19]. The key point is the following chain of

relations relating the partition function on a compact three-manifold which can be

obtained gluing to solid tori D2×S1 with some SL(2, Z) element, which in the squashed

three sphere case S3
b is the element S and the 3d holomorphic blocks:

ZS3
b

=

∫
||Υ||2S =

∑
α

∣∣∣∣∣∣∣∣∫
Γα

Υ

∣∣∣∣∣∣∣∣2
S

=
∑
α

∣∣∣∣∣∣BD2×S1

α

∣∣∣∣∣∣2
S
. (A.1)
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This very non-trivial chain of identities provides us with a practical way to obtain

the block integrand Υ by factorising the integrand of the S3
b partition function which

consists of the classical contribution of the mixed Chern-Simons couplings and the

one-loop contribution of the vector and chiral multiplets:

ZS3
b

=

∫
ZCSZvecZmatter . (A.2)

The factorisation of the S3
b integrand follows from the fact that the vector and matter

contributions are expressed in terms of the double sine function S2(X) which can be

factorised as:

S2(X) = e
iπ
2
B22(X)

(
e2πibX ; e2πib2

)
∞

(
e2πib−1X ; e2πib−2

)
∞
≡ e

iπ
2
B22(X)

∣∣∣∣∣∣(e2πibX ; e2πib2
)
∞

∣∣∣∣∣∣2
S
,

(A.3)

where B22(X) stands for the quadratic Bernoulli polynomial

B22(X) =
(
X − ω

2

)2

− 1

12

(
b2 + b−2

)
, (A.4)

where ω = b+ b−1. Using this property we can factorise the one-loop contributions to

the T [SU(N)] partition function on S3
b :

1. Bifundamental hypermultiplet of mass m̃ conneting nodes a and b:

Z
(a,b)
bifund

[
S3
b

]
=
∏
±

Na∏
i=1

Nb∏
j=1

S−1
2

(
ω

4
− im̃

2
± i
(
X̃

(a)
i − X̃

(b)
j

))
=

=
Na∏
i=1

Nb∏
j=1

S2

(
3ω
4

+ i m̃
2

+ i
(
X̃

(a)
i − X̃

(b)
j

))
S2

(
ω
4
− im̃

2
+ i
(
X̃

(a)
i − X̃

(b)
j

)) , (A.5)

and using the factorization formula (A.3) can be expressed as:

Z
(a,b)
bifund

[
S3
b

]
=

Na∏
i=1

Nb∏
j=1

e
iπ
2

[
B22

(
3ω
4

+ im̃
2

+i
(
X̃

(a)
i −X̃

(b)
j

))
−B22

(
ω
4
− im̃

2
+i
(
X̃

(a)
i −X̃

(b)
j

))]
×

×

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(
e

2πib
[
3ω
4

+ im̃
2

+i
(
X̃

(a)
i −X̃

(b)
j

)]
; q

)
∞(

e
2πib

[
ω
4
− im̃

2
+i
(
X̃

(a)
i −X̃

(b)
j

)]
; q

)
∞

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

S

(A.6)

This general expression can be significantly simplified in for the matter content of

T [SU(N)] theory. In this case only two adjacent nodes are connected with the
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bifundamental hypermultiplet so that we should take b = a+ 1 in the expression

above. Also we fix the ranks of the gauge groups in the following form Na = a.

Then we can write the contribution of all bifundamental hypers in T [SU(N)]

quiver in the following form:

Zbifund

[
S3
b

]
=

N−2∏
a=1

Z
(a,a+1)
bifund

[
S3
b

]
= e−

~
12
N(N−1)(N−2)β(1−β)

N−1∏
j=1

t−(N−2)X
(N−1)
j /2~×

×
N−2∏
a=1

a∏
i=1

tX
(a)
i /~

N−1∏
a=1

a∏
i,j=1

∣∣∣∣∣∣
∣∣∣∣∣∣
(
tx

(a+1)
j /x

(a)
i ; q

)
∞(

x
(a+1)
j /x

(a)
i ; q

)
∞

∣∣∣∣∣∣
∣∣∣∣∣∣
2

S

, (A.7)

where we made the following identification with the holomorphic block variables:

e2πib2 ≡ q = e~ , e2πbX̃
(a)
i e2πiba(ω4−i

m̃
2 ) ≡ eX

(a)
i = x

(a)
i , e2πib(ω2 +im̃) ≡ −q1/2e−m

′
= t .

So we identify 2πbm̃ ≡ m′ where m̃ are the dimensionless real masses parameters

(use S3
b radius) entering in the S3

b partition function while m′ = Rm3d is the

dimensionless axial mass appearing in the holomorphic block. And the S3
b and

D2 × S1 Coulomb branch variables 2πbX̃
(a)
i ≡ X ′

(a)
i which is then further shifted

to X
(a)
i .

2. Nf hypers of masses M̃p (p = 1, . . . , N
(a)
f ) connected to the U(N −1) node.

Factorising the double sine as in the previous case and expressing the result in

terms of the shifted exponentiated variables we find:

Zfund

[
S3
b

]
= e−

~
4
N(N2−1)β(1−β)

N−1∏
i=1

tNX
(N−1)
i /2~

N−1∏
i=1

N∏
p=1

∣∣∣∣∣∣
∣∣∣∣∣∣
(
tµp/x

(N−1)
i ; q

)
∞(

µp/x
(N−1)
i ; q

)
∞

∣∣∣∣∣∣
∣∣∣∣∣∣
2

S

,

(A.8)

where we also introduced

µp = e2πbM̃pe2πibN(ω4−i
m̃
2 ) = eM

(a)
p . (A.9)

again we have the identification 2πbM̃p = M ′
p between the dimensionless mass

parameters M̃p on S3
b and the dimensionless mass parameters M ′

p = RM3d
p on

D2 × S1.
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3. Vector+adjoint multiplet of mass m̃ at node a. Finally the contribution of

vector and adjoint hypers is given by:

Zvec+adj

[
S3
b

]
= e

~
4
N(N−1)β(1−β)e−

m′2
4~ N

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
N−1∏
a=1

Na∏
i 6=j

(
x

(a)
j /x

(a)
i ; q

)
∞

Na∏
i,j

(
tx

(a)
j /x

(a)
i ; q

)
∞

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

S

. (A.10)

4. Mixed Chern-Simon terms. Finally we need to discuss the contribution of

the mixed Chern-Simon terms. In the T [SU(N)] theory we have turned on real

masses Ta+1 − Ta for the topological symmetry of the a-th gauge node. These

mixed Chern-Simons terms contribute to partition function as:

Z
(a)
FI

[
S3
b

]
= e

aNa
2

(1−β)(Ta+1−Ta)

Na∏
i=1

eX
(a)
i (Ta−Ta+1)/~ , (A.11)

where the first factor comes from the change of variables from X̃
(a)
i to X

(a)
i .

Other mixed gauge-flavor Chern-Simons coupling are induced by the factorisation

of the chiral multiplets (linear in X
(a)
i ) in (A.7), (A.8). Finally all the remaining

exponential terms in (A.7), (A.8) and (A.10) are mixed background Chern-Simons

contributions.

At this point we should express these Chern-Simons contributions as squares. To do

so one can use the following rewriting of the modular transformation of the Jacobi-theta

function:

e−
(X−(iπ+~/2))2

2~ = θq(x)θq̃(x̃) = ||θq(x)||2S (A.12)

where θq(x) = (qx−1; q)∞(x; q)∞. Using this identity we can convert quadratic expo-

nential into squares of theta functions and deduce the combination of theta functions

which represent the contribution of the Chern-Simons coupling to the block integral.

For more details we refer the reader to [18]. In [51] the theta functions appearing in the

block integrals have been shown to arise as one-loop contributions of 2d multiplets on

the boundary torus.

B Calculation of free field correlators

In this appendix we show how to get the DF representation of the conformal blocks in

Toda theory and its q-deformed version.
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B.1 Toda conformal block

To calculate free field correlators of the form (2.48) we normal order all our expressions

using the standard normal ordering identity valid for the operators vi commuting on a

c-number: ∏
i

: evi : = :
∏
i

evi :
∏
i<j

e[v+i , v
−
j ]. (B.1)

Then using the Heisenberg algebra (2.45) it is straightforward to obtain the following

relations for the normal ordering of the screening currents (2.43) and vertex opera-

tors (2.44).

1. Normal ordering the screening currents from the same sector

Na∏
i=1

S(a)

(
x

(a)
i

)
= C(a,a)

(
x(a)
)

:
Na∏
i=1

S(a)

(
x

(a)
i

)
: , (B.2)

C(a,a)
(
x(a)
)

=
∏
i

(
x

(a)
i

)β(N−1)∏
i 6=j

(
1−

x
(a)
j

x
(a)
i

)β

. (B.3)

2. Normal ordering the screening currents from different sectors

:
Na∏
i=1

S(a)

(
x

(a)
i

)
: :

Nb∏
j=1

S(b)

(
x

(b)
j

)
: =

= C(a,b)
(
x(a), x(b)

)
:
Na∏
i=1

S(a)

(
x

(a)
i

) Nb∏
j=1

S(b)

(
x

(b)
j

)
: ,

where

C(a,b)
(
x(a), x(b)

)
= (δb,a+1 + δb,a−1)

Na∏
i=1

(
x

(a)
i

)−β Nb Na∏
i=1

Nb∏
j=1

(
1−

x
(b)
j

x
(a)
i

)−β
. (B.4)

3. Normal ordering the screening currents and vertex operators

V~α (z)
Na∏
i=1

S(a)

(
x

(a)
i

)
= C(a)

(
x(a), z, ~α

)
:V~α (z)

Na∏
i=1

S(a)

(
x

(a)
i

)
: ,

C(a)
(
x(a), z, ~α

)
∼

Na∏
i=1

(
1− x

(a)
i

z

)αa−αa+1

, (B.5)

where we have omitted an overall constant factor.
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4. Normal ordering of different vertex operators

l∏
p=1

V T
~α(p)(zp) = Cvert.(~α, z) :

l∏
p=1

V T
~α(p)(zp) : , (B.6)

where

Cvert. (~α, z) =
l∏

p<k

(zp − zk)
1
β (~α(p), ~α(k)) . (B.7)

5. Vertex operator at the origin. To evaluate it we notice that after the normal

ordering under the integral we get the term of the form

n∏
a=1

Na∏
i=1

(
x

(a)
i

)√β(P (a)−P (a+1))
|~α(0)〉 =

n∏
a=1

Na∏
i=1

(
x

(a)
i

)(α(0)
a −α

(0)
a+1

)
|~α(0)〉. (B.8)

Another way to obtain the factor (B.8) is to take z → 0 limit of Eq. (B.5).

Finally collecting all the factors we have derived above we find that the free field

correlator (2.48) becomes the following matrix integral:

DFAnl+2 ∼
l∏

p<k

(zp − zk)
1
β (~α(p), ~α(k))

∮ n∏
a=1

Na∏
i=1

dx
(a)
i

n∏
a=1

Na∏
i=1

(
x

(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)

×

×
n∏
a=1

Na∏
i 6=j

(
1−

x
(a)
j

x
(a)
i

)β n−1∏
a=1

Na∏
i=1

Na+1∏
j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β l∏
p=1

n∏
a=1

Na∏
i=1

(
1− x

(a)
i

zp

)α
(p)
a −α

(p)
a+1

(B.9)

where we have omitted some of the coefficients of the conformal block, that stands in

front of the integral. In general this coefficient depends on the coordinates of the vertex

operators insertions.

B.2 q-Toda conformal block

Repeating the normal ordering calculation of the previous section for the screening

currents (2.55) and vertex operators (2.56) we obtain the following relations:

1. Normal ordering the screening currents from the same sector

Na∏
i=1

Sq(a)

(
x

(a)
i

)
=

∏
i<j

(
x

(a)
i

x
(a)
j

)β (
1−

x
(a)
j

x
(a)
i

) ( q
t

x
(a)
j

x
(a)
i

; q

)
∞(

t
x
(a)
j

x
(a)
i

; q

)
∞

 :
Na∏
i=1

Sq(a)

(
x

(a)
i

)
:

(B.10)
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We notice that the function∏
i<j

(
xi
xj

)β (txi x−1
j ; q

)
∞

(
qt−1xj x

−1
i ; q

)
∞(

xi x
−1
j ; q

)
∞

(
qxj x

−1
i ; q

)
∞

, (B.11)

is q-periodic and thus yields an overall constant in front of the integral. We can

then rewrite previous expression in a more convenient form

Na∏
i=1

Sq(a)

(
x

(a)
i

)
= C(a,a)

q

(
x(a)
)

:
Na∏
i=1

Sq(a)

(
x

(a)
i

)
: , (B.12)

C(a,a)
q

(
x(a)
)

=
Na∏
i=1

(
x

(a)
i

)β(Na−1)
Na∏
i 6=j

(
x
(a)
j

x
(a)
i

; q

)
∞(

t
x
(a)
j

x
(a)
i

; q

)
∞

. (B.13)

2. Normal ordering the screening currents from different sectors

:
Na∏
i=1

Sq(a)

(
x

(a)
i

)
: :

Nb∏
j=1

Sq(b)

(
x

(b)
j

)
: = C(a,b)

q

(
x(a), x(b)

)
:
Na∏
i=1

Sq(a)

(
x

(a)
i

) Nb∏
j=1

Sq(b)

(
x

(b)
j

)
: ,

(B.14)

where

C(a,b)
q

(
x(a), x(b)

)
=
(
δ(b,a+1) + δ(b,a−1)

) Na∏
i=1

(
x

(a)
i

)−β Nb Na∏
i=1

Nb∏
j=1

(
u
x
(b)
j

x
(a)
i

; q

)
∞(

v
x
(b)
j

x
(a)
i

; q

)
∞

,

(B.15)

and v =
√
qt−1, u =

√
qt.

3. Normal ordering the screening currents and vertex operators

V q
~α (z)

Na∏
i=1

Sq(a)

(
x

(a)
i

)
= C(a)

q

(
x(a), z, ~α

)
: V q

~α (z)
Na∏
i=1

Sq(a)

(
x

(a)
i

)
: , (B.16)

where

C(a)
q

(
x(a), z, ~α

)
∼

Na∏
i=1

(
qαa+1v−a

x
(a)
i

z
; q

)
∞(

qαav−a
x
(a)
i

z
; q

)
∞

=

=
Na∏
i=1

cq

(
x

(a)
i , ~α, z

)(
x

(a)
i

)αa−αa+1

(
q1−αava z

x
(a)
i

; q

)
∞(

q1−αa+1va z

x
(a)
i

; q

)
∞

, (B.17)
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where we have omitted an overall z-dependent factor and we have also introduced

the following q-periodic function:

cq

(
x

(a)
i , ~α, z

)
=
(
x

(a)
i

)αa+1−αa
θq

(
qαa+1v−a

x
(a)
i

z

)
θq

(
qαav−a

x
(a)
i

z

) (B.18)

4. Normal ordering of different vertex operators

l∏
p=1

V~α(p) = Cq
vert (z, ~α) :

l∏
p=1

V~α(p) : , (B.19)

where

Cq
vert (z, ~α) =

l∏
p<r

exp

 n∑
a=1

∑
k>0

qk
(
qkα

(p)
a − 1

)(
q−kα

(r)
a − v2k(n−a−1)

)
(1− qk) (1− tk)

×

1

k

(
zr
zp

)k] l∏
p<r

z
1
β (~α(p),~α(r))
p =

n∏
a=1

l∏
p<r

(
q1−α(r)

a zr
zp

; q, t; q
)
∞(

q1+α
(p)
a −α

(r)
a zr

zp
; q, t; q

)
∞

×

(
q1+α

(p)
a v2(n−a−1) zr

zp
; q, t; q

)
∞(

qv2(n−a−1) zr
zp

; q, t; q
)
∞

l∏
p<r

z
1
β (~α(p),~α(r))
p ,(B.20)

where we have used the definition of q-Pochhammer symbol with multiple param-

eters defined as follows

(x; q1, . . . , qn)
def
=

∏
k1,..., kn≥1

(
1− x qk11 · · · qknn

)
. (B.21)

5. Initial and final states yield the same factor (B.8) as in the non-deformed case.

Notice however, that in the q-deformed case one cannot use the operator-state

correspondence to argue that the initial and final states are limits of the vertex

operators (B.5) for z → 0 and z →∞ respectively. We need simply to define the

initial state (2.50) separately as the momentum operator eigenstate.

– 51 –



Collecting all the factors we have obtained above, the free field correlator of (l + 2)

vertex operators is given by the following matrix integral:

qDFAnl+2 ∼ Cq
vert (~α, z)

l∏
p

z

1
β (~α(p),~α(0))+

n∑
a=1

Na
(
α
(p)
a −α

(p)
a+1

)
p ×

∮ n∏
a=1

Na∏
i=1

dx
(a)
i

n∏
a=1

Na∏
i=1

(
x

(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)+

l∑
p=1

(
α
(p)
a −α

(p)
a+1

)
×

×
n∏
a=1

Na∏
i 6=j

(
x
(a)
j

x
(a)
i

; q

)
∞(

t
x
(a)
j

x
(a)
i

; q

)
∞

n−1∏
a=1

Na∏
i=1

Na+1∏
j=1

(
u
x
(a+1)
j

x
(a)
i

; q

)
∞(

v
x
(a+1)
j

x
(a)
i

; q

)
∞

l∏
p=1

n∏
a=1

Na∏
i=1

(
q1−α(p)

a va zp

x
(a)
i

; q

)
∞(

q1−α(p)
a+1va zp

x
(a)
i

; q

)
∞

,

(B.22)

where we have omitted a q-periodic function of zp in front of the integral. Notice that

in the q → 1 limit the expression above reduces to Eq. (2.54). To see this we should

employ the following identity for the q → 1 limit of the ratio of two q-Pochhammer

symbols:

lim
q→1

(qcx; q)∞
(x; q)∞

= (1− x)−c, (B.23)

which we derive in the Appendix C. Using this formula get

lim
q→1

qDFAnl+2 ∼
∏
p<r

z
1
β (~α(p),~α(r))
p

(
1− zr

zp

) 1
β (~α(p),~α(r))+

∑n
a=1(β−1−1)(n−a−1)α

(p)
a

∮ n∏
a=1

Na∏
i=1

dx
(a)
i

n∏
a=1

Na∏
i=1

(
x

(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)+

l∑
p=1

(
α
(p)
a −α

(p)
a+1

)
×

×
n∏
a=1

Na∏
i 6=j

(
1−

x
(a)
j

x
(a)
i

)β n−1∏
a=1

Na∏
i=1

Na+1∏
j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β l∏
p=1

n∏
a=1

Na∏
i=1

(
1− zp

x
(a)
i

)α
(p)
a −α

(p)
a+1

∼

∼ DFAnl+2 , (B.24)

which coincides with the ordinary Toda conformal block (2.54) up to z-dependent

prefactor coming from the normal ordering of vertices. This discrepancy happens since

q-deformed vertex we defined in (2.55) includes so called U(1) factor, which is required

to match Toda conformal blocks with Nekrasov partition functions. For details see

discussion after Eq.(4.6) and [75].
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C q → 1 limits

In our work we use various formulas for the q → 1 limit of q-Pochhammer symbols. In

this appendix we give proofs for these formulas.

We start with the derivation of the standard formula for the following limit:

lim
q→1

(qa x; q)∞
(qb x; q)∞

= (1− x)b−a , (C.1)

with x variable held fixed during the limit. To prove this formula we need to take

logarithm of the right hand side, use q-Pochhammer definition and perform expansion

of the logarithms:

lim
q→1

∞∑
n=0

log

(
1− qa+nx

1− qb+nx

)
= lim

q→1

∞∑
n=0

∞∑
k=1

qbk − qak

k
xk

1

1− qk
=

∞∑
k=1

(a−b)x
k

k
= log(1−x)b−a ,

which completes the proof of (C.1).

Second formula we would like to discuss is given in (4.3):

lim
q→1−

(q; q)∞
(qx; q)∞

= (−~)x−1 Γ(x) . (C.2)

To prove this relation we need to use the definition of q-Gamma function:

Γq(x) ≡ (q; q)∞
(qx; q)∞

(1− q)−x , (C.3)

Then it is known that

lim
q→1−

Γq(x) = Γ(x) . (C.4)

Here we provide the short proof of this limit due to Gasper [76, 77]. First of all we

notice
∞∏
n=1

(
1− qn+1

1− qn

)x
=

1

(1− q)x
. (C.5)

Using this identity we can rewrite the limit of Γq(x+ 1) in the following form:

lim
q→1−

Γq(x+1) = lim
q→1−

∞∏
n=1

(1− qn)(1− qn+1)x

(1− qn+x)(1− qn)x
=

∞∏
n=1

(
1 +

x

n

)−1
(

1 +
1

n

)x
= xΓ(x) = Γ(x+1) ,

which completes the proof of (C.3).
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D RS Hamiltonians and T [SU(N)] holomorphic blocks

In this Appendix we prove that T [SU(N)] holomorphic block BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) is an

eigenfunction of the first RS Hamiltonian and its p-q dual. In other words, we prove

Eq. (2.22) and Eq. (2.25) for r = 1.

The integral representation of the holomorphic block (2.1) has the form19

BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = e

TN
∑N
i=1Mi
~ +(1−β)

∑N
i=1( 1

2
−i)Ti

∫
Γα

N−1∏
a=1

a∏
i=1

(
dx

(a)
i

x
(a)
i

(x
(a)
i )

Ta−Ta+1
~ −β

)
×

× ∆(q,t)(~x(2)) · · ·∆(q,t)(~x(N−1))

∆̄(q,t)(~x(1), ~x(2)) · · · ∆̄(q,t)(~x(N−2), ~x(N−1))∆̄(q,t)(~x(N−1), ~µ)
(D.1)

where

∆(q,t)(~x(a)) =
1

(t; q)a∞

a∏
i 6=j

(
x
(a)
i

x
(a)
j

; q

)
∞(

t
x
(a)
i

x
(a)
j

; q

)
∞

, ∆̄(q,t)(~x(a), ~x(a+1)) =
a+1∏
i=1

a∏
j=1

(
x
(a+1)
i

x
(a)
j

; q

)
∞(

t
x
(a+1)
i

x
(a)
j

; q

)
∞

(D.2)

D.1 Hamiltonian in ~µ variables

The Hamiltonian is given by

H1(µi, q
µi∂µi , q, t) =

N∑
i=1

N∏
j 6=i

tµi − µj
µi − µj

qµi∂µi . (D.3)

When the Hamiltonian acts on BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) it acts on the last factor

∆̄(q,t)(~x(N−1), ~µ). The result is

H1(µi, q
µi∂µi , q, t)

1

∆̄(q,t)(~x(N−1), ~µ)
=

1

∆̄(q,t)(~x(N−1), ~µ)

N∑
i=1

N∏
j 6=i

tµi − µj
µi − µj

N−1∏
l=1

x
(N−1)
l − µi

x
(N−1)
l − tµi

(D.4)

Next we use we write the r.h.s. of Eq. (D.4) as a contour integral in auxiliary variable z:

N∑
i=1

N∏
j 6=i

tµi − µj
µi − µj

N−1∏
l=1

x
(N−1)
l − µi

x
(N−1)
l − tµi

=
1

t− 1

∮
Cµ

dz

z

N∏
j=1

tz − µj
z − µj

N−1∏
l=1

x
(N−1)
l − z

x
(N−1)
l − tz

(D.5)

where Cµ encircles all the points µi. We can now deform the contour Cµ so that it

encircles all the other poles of the integral. Those are located at

19Here we write the prefactor F (q, t, ~τ) in a form, which is equivalent if one uses the conditions (2.8)

on the sum of masses and FI parameters. We also omit the overall constant independent of Ti and Mi.
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1. z = 0:

− 1

t− 1

∮
C0

dz

z

N∏
j=1

tz − µj
z − µj

N−1∏
l=1

x
(N−1)
l − z

x
(N−1)
l − tz

= − 1

t− 1
(D.6)

2. z =∞:

− 1

t− 1

∮
C∞

dz

z

N∏
j=1

tz − µj
z − µj

N−1∏
l=1

x
(N−1)
l − z

x
(N−1)
l − tz

= − t

t− 1
(D.7)

3. z =
x
(N−1)
l

t
for l = 1, . . . N − 1:

− 1

t− 1

∮
Cx
t

dz

z

N∏
j=1

tz − µj
z − µj

N−1∏
l=1

x
(N−1)
l − z

x
(N−1)
l − tz

=

= t
N∑
i=1

N−1∏
j 6=i

x
(N−1)
i − tx(N−1)

j

x
(N−1)
i − x(N−1)

j

N∏
p=1

x
(N−1)
i − µp

x
(N−1)
i − tµp

(D.8)

Summing the residues we get an identity:

N∑
i=1

N∏
j 6=i

tµi − µj
µi − µj

N−1∏
j=1

x
(N−1)
j − µi

x
(N−1)
j − tµi

=

= 1 + t
N−1∑
i=1

N−1∏
j 6=i

x
(N−1)
i − tx(N−1)

j

x
(N−1)
i − x(N−1)

j

N∏
p=1

x
(N−1)
i − µp

x
(N−1)
i − tµp

. (D.9)

On the next step we express the last product in the r.h.s. of Eq. (D.9) as the action of

difference operator in x
(N−1)
i on ∆̄(q,t)(~x(N−1), ~µ):

N∏
p=1

x
(N−1)
i − µp

x
(N−1)
i − tµp

1

∆̄(q,t)(~x(N−1), ~µ)
= q

−x(N−1)
i ∂

x
(N−1)
i

1

∆̄(q,t)(~x(N−1), ~µ)
(D.10)

We can now shift the integration variable x
(N−1)
i by q under the integral (provided that

the new contour qΓα contains the same poles as Γα). The shift can be understood as

integration by parts:∮
Γ

dx

x
f(x)q−x∂xg(x) =

∮
qΓ

dx

x

(
qx∂xf(x)

)
g(x). (D.11)

The shift operator q
x
(N−1)
i ∂

x
(N−1)
i thus acts on all the x

(N−1)
i -dependent parts of the

integrand except ∆̄(q,t)(~x(N−1), ~µ):
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1. The FI parameters:

q
x
(N−1)
i ∂

x
(N−1)
i (x

(N−1)
i )

TN−1−TN
~ −β =

τN−1

tτN
(x

(N−1)
i )

TN−1−TN
~ −β (D.12)

2. The remaining terms in the Hamiltonian:

q
x
(N−1)
i ∂

x
(N−1)
i

N−1∏
j 6=i

x
(N−1)
i − tx(N−1)

j

x
(N−1)
i − x(N−1)

j

=
N−1∏
j 6=i

qx
(N−1)
i − tx(N−1)

j

qx
(N−1)
i − x(N−1)

j

(D.13)

3. The q-Vandermond determinant ∆(q,t)(~xN−1):

q
x
(N−1)
i ∂

x
(N−1)
i ∆(q,t)(~xN−1) =

N−1∏
j 6=i

(qx
(N−1)
i − x(N−1)

j )(tx
(N−1)
i − x(N−1)

j )

(x
(N−1)
i − x(N−1)

j )(qx
(N−1)
i − tx(N−1)

j )
∆(q,t)(~xN−1)

(D.14)

4. The interaction term between x
(N−1)
i and x

(N−2)
i ∆̄(q,t)(~x(N−2), ~x(N−1)). We will

leave this unevaluated for a moment.

Notice that there is a cancellation between the contributions (D.13) and (D.14). Finally

we get:

H1(µi, q
µi∂µi , q, t)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t) =

= F (q, t, ~τ)

∫
Γα

N−1∏
a=1

a∏
i=1

(
dx

(a)
i

x
(a)
i

(x
(a)
i )

Ta−Ta+1
~ −β

)
∆(q,t)(~x(N−1))

∆̄(q,t)(~x(N−1), ~µ)
×

×

(
τN + τN−1

N−1∑
i=1

N−1∏
j 6=i

tx
(N−1)
i − x(N−1)

j

x
(N−1)
i − x(N−1)

j

q
x
(N−1)
i ∂

x
(N−1)
i

)
∆(q,t)(~x(2)) · · ·∆(q,t)(~x(N−2))

∆̄(q,t)(~x(1), ~x(2)) · · · ∆̄(q,t)(~x(N−2), ~x(N−1))
=

= F (q, t, ~τ)

∫
Γα

N−1∏
a=1

a∏
i=1

(
dx

(a)
i

x
(a)
i

(x
(a)
i )

Ta−Ta+1
~ −β

)
∆(q,t)(~x(N−1))

∆̄(q,t)(~x(N−1), ~µ)
×

×
(
τN + τN−1H1

(
x

(N−1)
i , q

x
(N−1)
i ∂

x
(N−1)
i , q, t

))
∆(q,t)(~x(2)) · · ·∆(q,t)(~x(N−2))

∆̄(q,t)(~x(1), ~x(2)) · · · ∆̄(q,t)(~x(N−2), ~x(N−1))
.

(D.15)

We have obtained the same operator H1, but now acting on the variables ~x(N−1)! Thus

the recursion begins. We can move the operator H1 on the variables ~x(N−2) and so on

until we reach x
(1)
1 and get a trivial result. What remains is the eigenvalue and the
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initial holomorphic block:

H1(µi, q
µi∂µi , q, t)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t) =

= (τN + τN−1 + τN−2 + · · ·+ τ1)BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = e1(~τ)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t)

(D.16)

D.2 p-q dual Hamiltonian in ~τ variables for T [U(2)] theory

The Hamiltonian which is p-q dual to Eq. (D.4) reads

H1

(
τi, q

τi∂τi , q,
q

t

)
=

N∑
i=1

N∏
j 6=i

q
t
τi − τj
τi − τj

qτi∂τi . (D.17)

We limit ourselves to the T [U(2)] holomorphic block:

BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t) = e

T2(M1+M2+(β−1)~)
~

∫
Γα

dx

x
x
T1−T2

~ −β

(
tµ1
x

; q
)
∞

(
tµ2
x

; q
)
∞(

µ1
x

; q
)
∞

(
µ2
x

; q
)
∞

(D.18)

The Hamiltonian (D.17) acts on the power of x producing the following in integral

H1

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t) =

= e
T2(M1+M2+(β−1)~)

~

∫
Γα

dx

x

[ q
t
τ1 − τ2

τ1 − τ2

x+
q
t
τ1 − τ2

τ1 − τ2

tµ1µ2

qx

]
x
T1−T2

~ −β

(
tµ1
x

; q
)
∞

(
tµ2
x

; q
)
∞(

µ1
x

; q
)
∞

(
µ2
x

; q
)
∞

(D.19)

We need to evaluate the integral with the insertion of the term in the square brackets.

To this end consider the the following integral of a particular total difference:

0 =

∫
Γα

dx

x

(
1− qx∂x

){
x
(

1− µ1

x

)(
1− µ2

x

)
x
T1−T2

~ −β

(
tµ1
x

; q
)
∞

(
tµ2
x

; q
)
∞(

µ1
x

; q
)
∞

(
µ2
x

; q
)
∞

}
. (D.20)

Acting with the shift operator on every term in the curly brackets one gets the following:

0 =

∫
Γα

dx

x

[
x
(

1− µ1

x

)(
1− µ2

x

)
− qτ1

tτ2

x

(
1− tµ1

qx

)(
1− tµ2

qx

)]
x
T1−T2

~ −β

(
tµ1
x

; q
)
∞

(
tµ2
x

; q
)
∞(

µ1
x

; q
)
∞

(
µ2
x

; q
)
∞

=∫
Γα

dx

x

[
x

(
1− qτ1

tτ2

)
− (µ1 + µ2)

(
1− τ1

τ2

)
+
µ1µ2

x

(
1− tτ1

qτ2

)]
x
T1−T2

~ −β

(
tµ1
x

; q
)
∞

(
tµ2
x

; q
)
∞(

µ1
x

; q
)
∞

(
µ2
x

; q
)
∞
.
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We observe that miraculously the expression in square brackets contains exactly the

combination of powers of x appearing in Eq. (D.19) with the right coefficients. What

remains is the scalar factor, which gives the eigenvalue. We thus get

H1

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t) = (µ1 + µ2)BD2×S1, (α)

T [U(2)] (~µ, ~τ , q, t). (D.22)

Finally one can notice that

H2

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t) =

q

t
qτ1∂τ1+τ2∂τ2BD2×S1, (α)

T [U(2)] (~µ, ~τ , q, t) =

= µ1µ2BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t). (D.23)
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