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Abstract: We derive ground state eigenfunctions and eigenvalues of various relativistic el-

liptic integrable models. The models we discuss appear in computations of superconformal

indices of four-dimensional theories obtained by compactifying six-dimensional models on

Riemann surfaces. These include, among others, the Ruijsenaars-Schneider model and the

van Diejen model. The derivation of the eigenfunctions builds on physical inputs, such as

conjectured Lagrangian across dimensions IR dualities and assumptions about the behav-

ior of the indices in the limit of compactifications on surfaces with large genus/number of

punctures/flux.
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1 Introduction

Elliptic integrable quantum mechanical systems are ubiquitous in the study of supersymmet-

ric quantum field theories [1–8]. Typically these systems appear while accounting for various

protected sectors of such theories. It would be thus extremely interesting to understand the

eigenvalues and eigenfunctions of such integrable systems. See for example [9–19]. In partic-

ular, as we will review below, studying the superconformal index of classes of supersymmetric

theories in four dimensions, the knowledge of the eigenfunctions leads to determination of the

index even if a usual Lagrangian definition of a theory is not known. The way the relations

between the eigenfunctions and indices of four dimensional theories proceeds is through real-

izations of the 4d QFTs as compactifications of six dimensional SCFTs and derivation of the

precise map between geometric compactification data of a six dimensional theories and the

four dimensional theories. See [20] for a review.

Many examples of such a map are known when we also have a different, independent,

definition of the four dimensional theory: namely we have an across dimensions infrared du-

ality. In this note we will show how even a limited knowledge of a class of across dimensions

dualities can lead to determination of eigenfunctions of certain elliptic integrable systems.

On one hand we have a definition of the index of a class of theories using the Lagrangian

in terms of sequences of elliptic hypergeometric integrals. On the other hand, under certain

assumptions, the same index admits expansion in terms of eigenfunctions of an elliptic inte-

grable system. Making these assumptions and elementary arguments from statistical physics

we can determine the eigenfunctions. The method is particularly simple to apply to extract

the eigenfunction of the ground state of the system: although the energies depend on complex
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parameters there is a natural ordering of the spectrum and a natural notion of the ground

state.

We will first outline the general method to determine the eigenfunctions in Section 2.

We stress that the method has a physical input from across dimensional dualities and also

relies on certain mathematical assumptions. Then in Section 3 we discuss several examples

of applications of the method. First, we will consider the A1 Ruijsenaars-Schneider model.

The eigenfunctions of this model are well known in certain limits of the parameters leading

to e.g Macdonald polynomials. Here we will see how these can be easily computed perturba-

tively in parameters without taking any limits. The consistency of the result, at least in the

perturbative expansion, gives evidence for the validity of our suggested eigenfunctions and

the underlying conjectures. We will also discuss the BC1 van Diejen model and two some-

what more esoteric but simple integrable models which arose in physical contexts: we refer

to these systems as the A2 and the A3 models. The paper is supplemented by a Mathematica

notebook1 detailing all the reported computations.

2 Ground state eigenfunction from large compactifications

We commence with a general discussion. Let us consider the supersymmetric index [21–23] of

a compactification of some 6d (1, 0) SCFT T6d on geometry C (defined by genus of a Riemann

surface, the number and types of punctures, and flux for the 6d symmetry). For an N = 1

SCFT the superconformal index is defined as,

I = TrS3(−1)F qj2−j1+
R
2 pj2+j1+

R
2

rankGF∏
ℓ=1

uQℓ
ℓ . (2.1)

The trace is computed over the Hilbert space in radial quantization: that is quantization on

S3 times the radial direction. Here (j1, j2) are the two Cartan generators of the su(2)×su(2)
isometry of S3; Qℓ are Cartan generators of the global symmetry GF ; and R is the charge

under the superconformal R-symmetry. The index is then a function of the compactification

geometry as well as various parameters,

I[T6d, C]({xj},u6d, q, p) . (2.2)

The parameters are fugacities for various combinations of symmetries of the theory in 4d.

Parameters q and p are related to superconformal symmetry (as detailed above) and are

there for any N = 1 SCFT in 4d. The rest of the parameters correspond to various global

symmetries. They depend on a theory at hand and are typically taken to be phases. For

theories arising in compactifications we can split the global symmetry GF into two kinds: the

one coming from the symmetry, G6d, of the 6d theory and the one associated to the punctures.

Given the 6d SCFT the possibilities for the latter symmetry are classified as follows. One

first compactifies the 6d SCFT on a circle (possibly with holonomies for the 6d symmetry)

1https://github.com/anedelin/GroundStates
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and obtains an effective 5d description. In some cases the 5d description is in terms of a

gauge theory and one could study boundary conditions in the 5d spacetime. Such boundaries

correspond to punctures and the various symmetries one can obtain are sub-groups of the 5d

gauge group G5d. Punctures with symmetry G5d are called maximal and these will play a

special role for us. For a given 6d SCFT there might exist different circle compactifications

leading to different G5d and thus to different kinds of maximal punctures. In addition to

being maximal or non-maximal, punctures can be distinguished by other properties. We will

collectively refer to maximal punctures with different defining properties as being of different

types. From now on we will only turn parameters in the definition of the index corresponding

to maximal punctures.

Given indices of two compactifications, each with at least two maximal punctures of the

same type, one can compute the index of the compactification on a surface which is obtained

by gluing the two surfaces along the two maximal punctures,

I[T6d, C1 ⊕ C2]( {xj}S1∪S2 ,u6d, q, p) = (2.3)∮
dx ∆(x,u6d; q, p) I[T6d, C1]( {xj}S1 ∪ {x},u6d, q, p) I[T6d, C2]( {xj}S2 ∪ {x−1},u6d, q, p) .

The parameters x correspond to the Cartan generators of G5d associated to the glued maximal

punctures. The function ∆(x,u6d; q, p) is defined by properties of the punctures and is built

from indices of various vector and chiral superfields one needs to introduce when gluing the

two punctures. The integration for each parameter is over the unit circle when we assume to

take |q|, |p| < 1.

Finally, given a 6d SCFT and a 5d circle reduction one obtains an elliptic relativistic inte-

grable model definined by a set (elements of which are parametrized by label α) of commuting

Hamiltonians [4],

Hα [T6d, G5d] (x,u6d; q, p)

such that indices corresponding to different compactifications are Kernel functions of these,

Hα [T6d, G5d] (x1,u6d; q, p) · I[T6d, C]({x1,x2, · · · },u6d, q, p) = (2.4)

Hα [T6d, G5d] (x2,u6d; q, p) · I[T6d, C]({x1,x2, · · · },u6d, q, p) .

Here x1,2 correspond to maximal punctures of the same type and have G5d associated to

them. Moreover, the Hamiltonians of the integrable system are self-adjoint under the scalar

product defined using the measure ∆(x,u6d; q, p). The Hamiltonians Hα, when acting on the

parameters corresponding to G5d, introduce surface defects into the index computation. The

surface defects are labeled by α and the range of values for it depends on the theory at hand.

The self-adjointness property follows from conjectured S-dualities that the underlying theories

satisfy: e.g. the surface defect can be introduced by acting on any of the maximal punctures)

[4]. Because of the duality property the Hamiltonians for any choice of α commute. In

practice, choosing a particular 6d theory to perform the computation for, one obtains a set of

commuting analytic difference operators with coefficients being elliptic functions. Often these

correspond to well known relativistic elliptic integrable models (and sometimes more esoteric
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ones). Thus we will refer to the set of Hα as an elliptic integrable model. See [4, 24–28] for

concrete examples.

There are various ways to derive the integrable models associated to the 6d theory (with

a given circle compactification). One such way is first to derive, or more precisely conjecture,

an across dimensions dual of some compactification with enough punctures. This means

to conjecture a 4d Lagrangian theory flowing in the IR to the same fixed point as the 6d

SCFT compactified on a surface. Then using the Lagrangian theory one can compute the

corresponding index and derive the integrable model from its analytical properties [4].2

2.1 Index and eigenfunctions

Given the Kernel property of the index (2.4) it is natural to wonder whether one can expand

the index in terms of some proper set Λ of eigenfunctions of the integrable model,

Hα [T6d, G5d] (x,u6d; q, p) · ψλ(x) = Eα,λ ψλ(x) . (2.5)

Because of self-adjointnes of the Hamiltonians we can choose these functions to form an

orthonormal set, ∮
dx ∆(x,u6d; q, p) ψλ(x) ψλ′(x−1) = δλ,λ′ . (2.6)

We want to make the following ansatz,

I[T6d, C]({xj},u6d, q, p) =
∑
λ∈Λ

Cλ[T6d, C](u6d; q, p)

s∏
j=1

ψλ(xj) . (2.7)

Here we only refine the index with fugacities corresponding to the chosen type of a maximal

puncture (and s is the number of such punctures). If such an ansatz makes sense then the

Kernel property is manifest. Moreover, if we glue two surfaces together then the index of the

glued surface is given by,

I[T6d, C1 ⊕ C2]( {xj}S1∪S2 ,u6d, q, p) = (2.8)∑
λ∈Λ

C
(1)
λ [T6d, C1](u6d; q, p) C

(2)
λ [T6d, C2](u6d; q, p)

∏
j∈S1∪S2

ψλ(xj) .

One way for such an expansion to make sense is if there is a natural ordering on λ ∈ Λ,

λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · . (2.9)

We will compute the indices in expansion in the parameters q and p (assuming as before that

these are taken to be inside the unit circle). We note that the index of a superconformal

2See [24, 29–32] for related developments.
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theory is always regular in such an expansion and starts off as I = 1+ · · · . We define partial

sums,

I(n) =
n∑

i=0

Cλi
[T6d, C](u6d; q, p)

s∏
j=1

ψλi
(xj) . (2.10)

If we want to reproduce the index up to any given order N in expansion in q and p and

there is a finite value of n(N) such that up to order N , I(n>n(N)) are equal, then the ansatz

makes sense. This amounts to the coefficients Cλi
contributing at non-decreasing orders as

we increase i. We will give evidence in several examples below that this property is in fact

true for a wide variety of setups.

Moreover, we will see that the eigenfunction ψλ0(x) play a special role. We will find that

there is a unique eigenfunction which contributes to the index at order N = 0. Thus, in

particular λ0 is strictly less than λi for all i > 0. We will refer to this eigenfunction as the

ground state of the integrable system and will denote it by ψ0(x).

∮ dxi+1 Δ(xi+1, u6d; q, p)∮ dxi Δ(xi, u6d; q, p)∮ dxi−1 Δ(xi−1, u6d; q, p) ∮ dxi+2 Δ(xi+2, u6d; q, p)

ℐ1(xi−1, xi) ℐ1(xi, xi+1) ℐ1(xi+1, xi+2)

Figure 1. Graphical representation of gluing indices of tori with (at least) two maximal punctures to

higher genus surfaces.

2.2 Ground state from large compactifications

Let us assume that we can compute the index using explicit Lagrangian across dimension

dualities for some compactification with at least two maximal punctures. In addition we

might have other punctures, the surface might have some higher genus, and there might be

some flux. We assume that the ansatz for the index of this theory in terms of eigenfunctions

(2.8) is well defined in the sense discussed above. Then we write the index for this theory as,

I1(x1,x2) =
∞∑
i=0

Cλi
ψλi

(x1) ψλi
(x2) . (2.11)

Next we consider the index obtained by gluing n copies of this theory sequentially along the

maximal punctures. This can be done iteratively,

In+1(x1,x2) =

∮
dx ∆(x,u6d; q, p) In(x1,x) I1(x−1,x2) . (2.12)
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The theory obtained in this way has the number of other punctures, the genus, and the flux,

multiplied by n. The index is given in terms of eigenfiunctions by,

In(x1,x2) =
∞∑
i=0

(Cλi
)n ψλi

(x1) ψλi
(x2) . (2.13)

We then take the limit of large n. Up to any set order of the expansion of the index in this

limit, starting with some value of n only the ground state will contribute to the index. In

paticular we can compute,

C0 ≡ Cλ0 = lim
n→∞

In+1(x1,x2)

In(x1,x2)
. (2.14)

From here we obtain an explicit expression for the ground state eigenfunction,

ψ̃0(x) ≡ ψ0(1) ψ0(x) = lim
n→∞

1

(C0)
n In(x, 1) . (2.15)

Here we can get rid of ψ0(1) factor by normalizing the eigenfunction using the appropriate

scalar product. This gives us a very simple algorithm to compute the ground state eigenfunc-

tions for a variety of elliptic relativistic integrable models. The algorithm only relies on the

physical input of deriving across dimensions dualities for a two punctured compactification on

some surface satisfying the relevant properties outlined above. In principle one can try and

generalize the algorithm to derive all eigenfunctions of a given model. However the details

will cease to be generic as we might have several λi contributing at the same order of the

expansion. Moreover, it will be technically more involved to implement as it would require

computation of indices to high orders in expansion to derive eigenfunctions up to low orders.

In the following section we will implement this algorithm to derive ground state eigen-

functions for a variety of models.

2.3 Universality of large compactifications

Let us next discuss the physical implication of the above. For concreteness let us take the

theory with two punctures to be a genus one compactification with two maximal punctures

and no flux. Then gluing g − 1 such theories together we will obtain a theory corresponding

to genus g − 1 compactification and two maximal punctures. Finally we can glue the two

punctures together to obtain a theory corresponding to genus g compactification with no flux

and no punctures. Following the above results the index of this theory in the large g limit is

well approximated by,

Ig ∼ (C0)
g−1 . (2.16)

By well approximated we mean that the deviation between two sides of the above starts at

orders in expansion which grow linearly with g. This universal result hints that there should

be a clean physical interpretation associated with C0. In fact it was conjectured in [33] that
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the expansion (2.8) has the following meaning. Let us again take for concerteness the case

say of genus g compactification with no flux and no punctures so that (2.8) takes the form of,

I =
∑
λ∈Λ

(Cλ)
g−1 . (2.17)

The index counts (with signs) various local operators in the 4d theory. The 4d theory is a

compactification of a 6d one. A natural question is whether one can identify the origin of

the 4d operators counted by the index in the 6d theory. The conjecture of [33] is that the C0

captures local operators in 4d which originate from local operators in 6d properly smeared

on the Riemann surface. The smearing (which is the essence of the Riemann-Roch theorem)

resonates with the g−1 power appearing in the index. For other values of λ the local operators

in 4d originate from non-local operators in 6d wrapping the Riemann surface. The label λ

should be related to labeling of various such operators in 6d. In the limit of large genus the

fact that the index is dominated by λ = λ0 indicates then that the non-local operators would

acquire large charges upon compactification and contribute to the tail of the expansion of the

index.

The function C0 captures directly information about local operators of the 6d theory.

Technically one can view it as contribution to the index in 4d of local operators in 6d in genus

two compactifications. At the more conceptual level the coefficients of various terms in C0

count with signs dimensions of certain vector spaces one can associate to local operators in

6d [34]. These dimensions depend on the quantum numbers of the theory, and in particular

also on ones related to the compactified geometry. Note also that here as we do not have flux

and because of the universality in large genus limit the coefficient C0 should manifest the full

symmetry G6d. This should be also true for higher coefficients Cλ. As the coefficient C0 for

compactifications with zero flux and no punctures will play an important role in understanding

the 6d physics, to distinguish it from other compactifications we will denote it by Ĉ0. By a

similar logic [33] the eigenfunction ψ0(x) should capture the circle reduction of 5d operators

associated to the maximal puncture.

3 Examples

3.1 Elliptic RS model

The first example we will discuss is the elliptic Ruijsenaars-Schneider model of type A1. The

action of the basic Hamiltonian on a function is given by,3

HRS
A1

· ψ(x) =
θp(

√
p
q t x

−2)

θp(x2)
ψ(x q

1
2 ) +

θp(
√

p
q t x

2)

θp(x−2)
ψ(x q−

1
2 ) . (3.1)

This model arises when compatifying the (2, 0) type A1 6d SCFT to 4d [4]. The symmetry

of the 6d theory is G6d = SU(2), fugacity for the Cartan generator of which is parametrized

3Note that our choice of parameters is slightly different than the usual one in the literature. For example

our t is related to the one in [4] as t → t (q p)−
1
2 .
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here by t. The circle compactification to 5d gives the maximally supersymmetric YM theory

with gauge group SU(2). Thus the maximal puncture symmetry is SU(2) and the fugacity

for it is the parameter (denoted by x above) on which the Hamiltonian acts.

The simple across dimension duality we can use is the compactification on a sphere with

two maximal SU(2) punctures (and a third SU(2) puncture that will play no role). The

relevant theory is just a collection of two free bifundamental chiral fields [35]. The index is

given by,

I1(x1,x2) = Γe

(
(q p)

1
4 t

1
2 (x1)±1(x2)±1

)2
. (3.2)

The integration measure here is,∮
dx ∆(x,u6d; q, p) · · · = (q; q)(p; p)

2

∮
dx

2πix

Γe(
√
q p
t x2) Γe(

√
q p
t x−2) Γe(

√
q p
t )

Γe(x2)Γe(x−2)
· · · . (3.3)

We use the following definitions,

Γe(z) =

∞∏
i,j=0

1− z−1qi+1pj+1

1− z qipj
, θp(z) =

∞∏
i=0

(1− z pi)(1− z−1pi+1) , (z; q) =

∞∏
i=0

(1− z qi) . (3.4)

Using these definitions we readily compute from (2.14),

C0 = 1 + 3 t
√
p q +

(
t−2 − 2 + 5t2

)
p q +

(
3t− t−1

)
(p

3
2 q

1
2 + q

3
2 p

1
2 ) + · · · . (3.5)

Our procedure gives results as an expansion in parameters q and p. We will quote the results

to the orders we were able to perform actual computations. However, in principle one can

compute to any desired order.4

Using (2.15) we then obtain,

ψ̃0(x) = 1 + (4 + x2 + x−2) t (q p)
1
2 +

(
t−1 + (5 + x2 + x−2) t

)
(q + p) (q p)

1
2 + (3.6)(

10 t2 − 6− x2 − x−2 − t−2 + t2(x4 + x−4 + 4x2 + 4x−2)
)
q p+ · · · .

We verify (in expansion in q and p up to an order we could perform the computation) that

the above is an eigenfunction,

HRS
A1

· ψ̃0(x) = E0 ψ̃0(x) , (3.7)

and obtain that the ground state energy is,

E0 = 1− p+ (t+
1

t
)
√
p q − pq + (t+

1

t
) p

√
p q − p2 + · · · . (3.8)

4Practically, one can take q/p ≡ y and
√
qp ≡ X and think of all our expressions as expansions in X.

The · · · in the expressions denote higher orders in X. Interested reader can consult a Mathematica notebook

(https://github.com/anedelin/GroundStates) for details of the computation.

– 8 –

https://github.com/anedelin/GroundStates


Note that t parametrizes the Cartan generator of the G6d = SU(2) and the energy is invariant

under the Weyl group of this symmetry. An additional identity ψ̃0(x) has to satisfy [4] is,

ψ̃0(x)
∣∣∣
t→ 1

t

= Γe

(√
q p

t
x2

)
Γe

(√
q p

t
x−2

)
Γe

(√
q p

t

)4

ψ̃0(x) , (3.9)

can be also verified to hold for the eigenfunction (3.6) given here.

We also can consider various limits of the index giving simple known eigenfunctions

[36, 37]. First let us consider the Schur limit. In our notations this corresponds to taking

t = (q/p)
1
2 . Then the eigenfunctions ψλ(x) are just the Schur polynomials times

1/
(
(q x2; q)(q x−2; q)(q; q)

)
. This can be easily verified to hold for (3.6). Moreover taking first

t → t (q p)−
1
2 and then p → 0 we obtain the Macdonald limit of the index with the eigen-

functions expected to be given by Macdonald polynomials times 1/
(
(t x2; q)(t x−2; q)(t; q)

)
.

Again, this can be verified to hold for (3.6). The relevant polynomial in both cases is just the

constant one. More explicitly,

ψ̃0(x)
∣∣∣
t→t(q p)−

1
2 |p→0

=
(t2; q)

(t q; q)

1

(t x2; q)(t x−2; q)(t; q)4
. (3.10)

Finally, in this case by studying the Macdonald limit we know that the labels λ in (2.8)

correspond to finite dimensional irreps of SU(2) [36]. From here we deduce that there should

be no degeneracy for λi, and thus (2.9) should define a strict ordering. From here we define

C1 ≡ Cλ1 = lim
n→∞

In+1(x, 1)− (C0)
n+1ψ̃0(x)

In(x, 1)− (C0)nψ̃0(x)
. (3.11)

The explicit computation gives,

C1 = 2(q p)
1
4

(√
t− 3pq

√
t+ (3p+ 3q + 2)

√
pqt3/2 + 3pqt5/2 + · · ·

)
. (3.12)

Note that C1 leading term scales as (q p)
1
4 whereas for C0 it scales as 1 and that is the reason

why we can separate the two contributions in the limit considered here. From here we obtain

an expression for the first excited state eigenfunction,

ψ̃1(x) ≡ ψ1(1) ψ1(x) = lim
n→∞

1

(C1)
n

(
In(x, 1)− (C0)

nψ̃0(x)
)
. (3.13)

The computation results in,

ψ̃1(x) = 2 (x+
1

x
)

(
1 + p+ q − (

1

t
− 4t)

√
p q

)
+ 2 (x3 +

1

x3
) t

√
q p+ · · · . (3.14)

In principle we can continue to other eigenfunctions in a similar manner. We can also compute

Ĉ0 coefficient which in this case is given by:

Ĉ0 = 1 + pq
(
t2 + t−2 + 4

)
− 2

√
pq(p+ q)

(
t+ t−1

)
+ pq(p+ q)

(
t2 + 5 + t−2

)
−4(pq)3/2

(
t+ t−1

)
− 2

√
pq(p2 + q2)

(
t+ t−1

)
+ · · · . (3.15)
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Note that the term at order q p can be written as χadj.SU(2)(t)+3. This looks as a contribution

of a conserved current of global SU(2)t symmetry of the 6d (1, 0) theory and we might want

to interpret the +3 as coming from additional rotations in the compactification dimensions.

This is very reminiscent of indices of compactifications on a sphere [38] where the rotations,

the SU(2) isometry of the sphere, becomes a global symetry in 4d.

3.2 The A2 model

Let us start with the following Hamiltonian defined on A2 root system,

HA2
Y · ψ(x) = θp(p

1
2Y x2/x3)θp(p

1
2Y x3/x2)

θp(x2/x1)θp(x3/x1)
ψ(x1q

− 2
3 , x2q

1
3 , x3q

1
3 ) +

θp(p
1
2Y x1/x3)θp(p

1
2Y x3/x1)

θp(x1/x2)θp(x3/x2)
ψ(x1q

1
3 , x2q

− 2
3 , x3q

1
3 ) + (3.16)

θp(p
1
2Y x2/x1)θp(p

1
2Y x1/x2)

θp(x1/x3)θp(x2/x3)
ψ(x1q

1
3 , x2q

1
3 , x3q

− 2
3 ) .

Here Y is a general parameter and Hamiltonians with different Y commute with each other.

The parameters xi satisfy
∏3

i=1 xi = 1. This Hamiltonian was derived in [25] as corresponding

to the integrable system associated with the 6d SCFT being the so called minimal SU(3) SCFT

[39, 40] and the 5d effective theory being pure Chern-Simons SU(3) model with level nine [41].

The relevant across dimensions duality was derived in [42]. The model was further discussed

in [43].

The simple across dimension duality we can use is the compactification on a sphere with

two maximal SU(3) punctures (and two so called empty ones). The relevant theory is just a

collection of three free bifundamental chiral fields with a baryonic superpotential [42]. The

index is given by,

I1(x1,x2) =
3∏

i,j=1

Γe

(
(q p)

1
3x1ix

2
j

)3
. (3.17)

The integration measure here is,

∮
dx ∆(x,u6d; q, p) · · · = (q; q)2(p; p)2

6

∮ 2∏
i=1

dxi
2πixi

3∏
i=1

3∏
j=i+1

1

Γe(xi/xj)Γe(xj/xi)
· · · .(3.18)

Note here G6d is trivial and thus there are no u6d parameters.

Using these ingredients we readily compute from (2.14),

C0 = 1 + 2pq + 2p2q + 3p3q + 3p4q + 3p5q + 3p6q + 2pq2 + 6p2q2 + 7p3q2 +

9p4q2 + 11p5q2 + 3pq3 + 7p2q3 + 9p3q3 + 13p4q3 + 3pq4 + 9p2q4 + 13p3q4 +

3pq5 + 11p2q5 + 3pq6 + · · · . (3.19)
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Using (2.15) we then obtain the ground state eigenfunction,

ψ̃0(x) = 1 +

(
1

x31
+

1

x32
+

1

x33

)
q p+

(
1

x31
+

1

x32
+

1

x33
− 1

)
(q2p+ p2q) + (3.20)(

1

x61
+

1

x62
+

1

x63
+

1

x31
+

1

x32
+

1

x33
+ x31 + x32 + x33 − 4

)
q2p2 +(

1

x31
+

1

x32
+

1

x33
− 3

)
(q3p+ p3q) +

(
1

x31
+

1

x32
+

1

x33
− 3

)
(q4p+ p4q) +(

1

x61
+

1

x62
+

1

x63
+ x31 + x32 + x33 − 9

)
(q3p2 + p3q2) + · · · .

It can be verified that indeed ψ̃0(x) is an eigenfunctions of (3.16),

HA2
Y · ψ̃0(x) = E0 ψ̃0(x) , (3.21)

and the corresponding ground state energy E0 is given by,

E0 =
(1− p

3
2Y 3)(1− p

3
2Y −3)

θp(p
1
2Y )

(1− q p− p3 − p q2 − 2q p2 − 3p3q − 2p2q2 + · · · ) . (3.22)

This expression was verified up to fourth order in the expansion in p and q. Finally, we can

also compute the coefficient Ĉ0 which is given by,

Ĉ0 = (3.23)

1 + 3q p+ 4(q2p+ p2q) + 16(q p)2 + 9(q3p+ p3q) + 30(q3p2 + p3q2) + 9(q4p+ p4q) + · · · .

Note here at the order q p we only have the “geometric” +3 coefficient as there is no global

symmetry in 6d.

3.3 The A3 model

Now let’s move to the A3 model and repeat the same procedure. The Hamiltonian for this

model is defined by,

HA3 · ψ(x) = θp(p
1
2x3/x2)θp(p

1
2x4/x2)θp(p

1
2x3/x4)

θp(x2/x1)θp(x3/x1)θp(x4/x1)
ψ(x1q

− 3
4 , x2q

1
4 , x3q

1
4 , x4q

1
4 ) +

θp(p
1
2x3/x1)θp(p

1
2x1/x4)θp(p

1
2x3/x4)

θp(x1/x2)θp(x3/x2)θp(x4/x2)
ψ(x1q

1
4 , x2q

− 3
4 , x3q

1
4 , x4q

1
4 ) +

θp(p
1
2x1/x2)θp(p

1
2x4/x2)θp(p

1
2x1/x4)

θp(x2/x3)θp(x1/x3)θp(x4/x3)
ψ(x1q

1
4 , x2q

1
4 , x3q

− 3
4 , x4q

1
4 ) + (3.24)

θp(p
1
2x3/x2)θp(p

1
2x1/x2)θp(p

1
2x3/x1)

θp(x3/x4)θp(x2/x4)θp(x1/x4)
ψ(x1q

1
4 , x2q

1
4 , x3q

1
4 , x4q

− 3
4 ) .
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where
∏4

i=1 xi = 1 parametrize the SU(4) puncture symmetry on which the operator acts.

Note that as opposed to the A2 case there are no additional parameters that the operator

depends on. This operator was derived in [25] from compactifications of SO(8) minimal

conformal matter and was also discussed later in [43].

Similar to the previous case, the simplest across dimension duality we have here is the

compactification on a sphere with two maximal SU(4) punctures and two empty ones (i.e.

the puncture with no symmetry). The relevant theory consists of just two bifundamental

chiral fields and a baryonic superpotential [42]. The superconformal index is given by,

I1(x1,x2) =
4∏

i,j=1

Γe

(
(q p)

1
4x1ix

2
j

)2
. (3.25)

The integration measure here is,∮
dx ∆(x,u6d; q, p) · · · = (q; q)3(p; p)3

24

∮ 3∏
i=1

dxi
2πixi

4∏
i=1

4∏
j=i+1

1

Γe(xi/xj)Γe(xj/xi)
· · · .(3.26)

Also here G6d is trivial and thus there are no u6d parameters.

Performing the same computation as above we find from (2.14),

C0 = 1 + 2pq + 2p2q + 2p3q + 2pq2 + 4p2q2 + 2pq3 + · · · (3.27)

Then using (2.15) we find the ground state to be,

ψ̃0(x) = 1 +

3 +

4∑
i<j

x2ix
2
j

 pq +

2 +

4∑
i<j

x2ix
2
j

 (pq2 + p2q + pq3 + p3q) +

 4∑
i<j

x4ix
4
j + 5

4∑
i<j

x2ix
2
j +

4∑
i<j

x−4
i

 p2q2 + · · · (3.28)

We can act with (3.24) to verify that this is an eigenfunction of the Hamiltonian. Indeed we

find that the energy is given by,

E0 = 1 + 2p
1
2 + 2p+ 4p

3
2 + 5p2 − pq + · · · (3.29)

3.4 The van Diejen model

Another interesting example of elliptic integrable Hamiltonians is van Diejen integrable model

that was first introduced as deformation of RS model in [44].5 The Hamiltonian itself is

written as follows [48],

HvD · ψ(x) ≡

8∏
n=1

θp
(
(pq)

1
2hnx

)
θp(x2)θp

(
qx2

) ψ(qx) +

8∏
n=1

θp
(
(pq)

1
2hnx

−1
)

θp(x−2)θp
(
qx−2

) ψ
(
q−1x

)
+ V (h;x) ψ(x) .

(3.30)

5See e.g. [45–47] for discussions of some of the eigenfunctions of this model.
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This operator depends on the octet of hi parameters. The constant term V (h;x) of van Diejen

Hamiltonian is an elliptic function in x variable with periods 1 and p. Poles of this function

in the fundamental domain are located at

x = ±q±
1
2 , x = ±q±

1
2 p

1
2 , (3.31)

and corresponding residues are given by:

Resx=sq±1/2V (h;x) = ∓s

8∏
n=1

θp

(
sp

1
2hn

)
2q∓

1
2 θp (q−1) (p; p)2∞

,

Resx=sq±1/2p1/2V (h;x) = ∓s

8∏
n=1

h
− 1

2
n θp (shn)

2q∓
1
2 p−

3
2 θp (q−1) (p; p)2∞

, (3.32)

where s = ±1. The expression we can write for this constant term is not unique. For our

purposes we will use the following form,

V (x;hi) =

8∏
j ̸=i

θp

(
q−1hihjh

− 1
2

)
θp

(
q−2h2ih

−1/2
) θp

(
(pq)

1
2h−1

i x±1
)

θp

(
(pq)−

1
2hih−1/2q−1x±1

) +


8∏

j ̸=i

θp

(
(pq)

1
2hjx

−1
)

θp

(
(pq)

1
2h−1

i h1/2qx−1
) θp

(
(pq)

1
2h−1

i h1/2x
)
θp

(
(pq)

1
2h−1

i x−1
)

θp (q−1x−2) θp (x2)
+
(
x→ x−1

)
 ,(3.33)

which was derived in [27]. Here h parameter is just a product of all hi:

h =

8∏
i=1

hi . (3.34)

This model was shown to arise in the compactifications of the 6d E-string theory down to

4d [26, 27]. The global symmetry of 6d theory here is E8 whose Cartan is parametrized by

hi parameters. Circle compactification of the E-string theory leads to the SU(2) maximally

supersymmetric Yang-Mills theory. Thus the maximal puncture symmetry in 4d theory is

also SU(2) and van Diejen operator (3.30) acts on the fugacities of this symmetry. From the

point of view of 4d theory hi parameters play the role of the inverse charges of the SU(2)

puncture moment maps. The moment maps depend on the type of the puncture. In what

follows for convenience reasons we will use such a puncture that all of the parameters of the

integrable models above are identified with moment maps directly. Considering the problem

with all parameters turned on is computationally complicated so we will only analyze it by

setting all of the moment maps charges to be the same and equal to t, which at the level of

hi parameters is equivalent to,

hi = t−1 , ∀ i = 1, ..., 8 . (3.35)
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The simplest building blocks we need to run our arguments are two- and three-punctured

spheres with SU(2) punctures. Two-punctured sphere (tube) theory is just a bifundamental

chiral field for two SU(2) symmetries with the flip field and two octets of the fundamental

multiplets corresponding to two sets of the moment map operators [49, 50]. In case all moment

maps have the same charges the index reads,

I1(x1, x2) = Γe

(
pqt4

)
Γe

(
t−2x±1

1 x±1
2

)
Γe

(
(pq)

1
2 tx±1

1

)8
. (3.36)

Here we define tube theory so that the punctures are of conjugated types. The integration

measure for the resulting eigenfunctions is the following:

∮
dx ∆(x,u6d; q, p) · · · = (q; q)(p; p)

2

∮
dx

2πix

1

Γe (x±2)

8∏
i=1

Γe

(
(pq)

1
2hix

±1
)
· · · =

(q; q)(p; p)

2

∮
dx

2πix

1

Γe (x±2)
Γe

(
(pq)

1
2 t−1x±1

)8
· · · , (3.37)

where in the last line we specify measure in our case corresponding to (3.35). Then using our

algorithm we derive the following expression for C0:

C0 = 1− pq(1 + p+ q)t−4 +
(
t4 + 28

(
t2 − t−2

))
pq(1 + p+ q + p2 + q2) +

p2q2
(
t8 + 28t6 + 273t4 − 512t2 + 456t−2 − 785

)
+ ... (3.38)

Corresponding ground state is then given according to (2.15) by,

ψ̃0(x) = 1 +
√
pq

[
16t−1 + 8t

(
x+

1

x

)]
+ pq

[
108t−2 − 69 + 128

(
x+

1

x

)
−(

x2 +
1

x2

)
+ 36t2

(
1 + x2 +

1

x2

)]
+
√
pq(p+ q)

[
16t−1 + 8t

(
x+

1

x

)]
+ · · · . (3.39)

Now acting with the van Diejen Hamiltonian (3.30) on the function above we can check that

it is indeed an eigenfunction of the operator with the corresponding ground state eigenvalue

given by

E0 = 1− p− q + ... (3.40)

Finally we can also use an expression for the trinion theory derived in [51] in order to find Ĉ0

defined in Section 2.3. The trinion index in the case of equal charges of all moment maps is

given by:

I(x1, x2, x3) =
(q; q)2(p; p)2

6

∮
dz1,2
2πiz1,2

3∏
j ̸=i

1

Γe

(
zi
zj

) 3∏
i=1

Γe

(
(pq)

1
6 t

4
3x±1

1 zi

)
×

Γe

(
(pq)

1
6 t−

1
6x±1

2 zi

)
Γe

(
(pq)

1
6 t−

1
6x±1

3 zi

)
Γe

(
(pq)

1
3 t−

1
3 z−1

i

)6
. (3.41)
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Gluing two such trinions along two pairs of SU(2) punctures we obtain a genus-one tube

theory. Using this basic building block we can construct higher genus tori leading to the

following expression for Ĉ0:

Ĉ0 = 1 + p q

(
8t3 +

8

t3
+ 28t2 +

28

t2
+ 56t+

56

t
+ 67

)
+ ... . (3.42)

Note that the coefficient of q p is what is expected from decomposition of the adjoint repre-

sentation of E8 into irreps SU(8)×U(1) plus 3, namely it is 248E8 + 3.

4 Discussion

We have illustrated how using physical input from across dimensions dualities one can gen-

erate eigenfunctions and eigenvalues for a variety of elliptic relativistic integrable models. In

principle for any six dimensional SCFT one can associate an integrable model (most straight-

forwardly if the SCFT when compactified on a circle admits an effective Lagrangian descrip-

tion).6 Thus the method is applicable for this rather large class of models. While we have

considered several examples in this paper there are still plenty of models to be considered.

First candidates for this program are models obtained in the compcatifications of the min-

imal (D,D) conformal matter and defined on AN and C2 root systems [26, 28] as well as

BCn van Diejen model which is expected to be related to the compactification of the rank n

E-string theory [38, 61]. Another important direction of the future research is going beyond

the ground states. It would require on one hand more model specific methods (e.g to deal

with “degeneracies”) and on the other hand also to develop more sophisticated computational

approaches. It would be also interesting to understand whether the functions derived here

admit an independent all order definition.
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