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Abstract

The Virasoro constraints play the important role in the study of matrix models and

in understanding of the relation between matrix models and CFTs. Recently the

localization calculations in supersymmetric gauge theories produced new families of

matrix models and we have very limited knowledge about these matrix models. We

concentrate on elliptic generalization of hermitian matrix model which corresponds to

calculation of partition function on S3 × S1 for vector multiplet. We derive the q-

Virasoro constraints for this matrix model. We also observe some interesting algebraic

properties of the q-Virasoro algebra.
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1 Introduction

The matrix models can be thought of as gauge theories in zero dimensions. The most well-

know example is given by the hermitian matrix model. We define the generating function

for this model as an integral over hermitian N ×N matrices M

Zherm
N ({t}) =

∫

dM e

∞∑

s=0

ts
s!
Tr(Ms)

, (1)

where the measure dM is fixed in such way that it is invariant under the symmetry M →

UMU †, where U is a U(N)-matrix. Alternatively the matrix model (1) can be rewritten as

the integral over eigenvalues λi

Zherm
N ({t}) =

∫ N
∏

i=1

dλi

∏

i<j

(λi − λj)
2 e

∞∑

s=0

ts
s!

∑

i

λs
i

, (2)

where the measure of integration is given by the well-known Vandermonde determinant.

This matrix model is well studied and one of the central properties of Zherm
N ({t}) is that it

is annihilated by an infinite set of differential operator in ts’s which are known as Virasoro

constraints [1, 2].

The natural trigonometric generalization of the hermitian matrix model is defined by the

following integral

Z
trig
N ({t}) =

∫ N
∏

i=1

dλi

∏

i<j

sinh2(λi − λj) e

∞∑

s=0

ts
s!

∑

i

λs
i

. (3)

If we set all the ts’s to zero except for s = 2 then this matrix model describes the partition

function for U(N) Chern-Simons theory on S3 [3, 4]. However we may study the expectation

values of Wilson loops (for a simple knot along the S1-fiber) in different representations and

thus Z
trig
N ({t}) can be regarded as the generating function for the expectation values of

Wilson loops in different representations (for this simple concrete knot) in Chern-Simons

theory. This matrix model can be also derived through the localization technique applied to

supersymmetric Chern-Simons theory (supersymmetric vector multiplet in 3D) [5].

The elliptic generalization of hermitian matrix model (2) is naturally given by the fol-

lowing formula

Zell
N ({t}) =

∮ N
∏

i=1

dzi

zi

∏

i<j

θ

(

zi

zj
; q

)

θ

(

zj

zi
; q

)

e

∞∑

s=0

ts
s!

∑

i

zsi
, (4)
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where the θ functions is defined as follows

θ(z; q) =

∞
∏

k=0

(1− zqk)(1− z−1qk+1) . (5)

If we set all tn’s to zero the model (4) corresponds to the partition function of a vector

multiplet on S3 × S1 [6, 7]. If we allow the supersymmetric Wilson loops then Zell
N ({t})

can be thought of as the generating function for the expectation values of Wilson loops

in different representations. Alternatively the matrix model (4) can be written in other

coordinates zi = eiλi . However the form (4) is more standard for the discussion of partition

functions and the supersymmetric indices on S3 × S1.

The hermitian model Zherm
N ({t}) satisfies the Virasoro constraints, see [8] for the review

of the subject. The natural question is whether the trigonometric Z
trig
N ({t}) and elliptic

Zell
N ({t}) generalisations also satisfy some type of Virasoro constraints. The goal of this paper

is to answer this question. We will show that Z
trig
N ({t}) satisfies the Virasoro constraints

while the elliptic model Zell
N ({t}) satisfies the deformed q-Virasoro constraints. On the way

we observe some interesting properties of the q-Virasoro algebra.

The paper is organised as follows: In section 2 we review the derivation of the Virasoro

constraints for the hermitian matrix model and we derive the Virasoro constraints for the

trigonometric generalization. In section 3 we discuss a different approach to the derivation

of Virasoro constraints, we introduce the basics of q-calculus and derive the q-Virasoro

constraints for a toy model. In section 4 we apply these ideas to the elliptic generalization

of the hermitian matrix model and derive q-Virasoro constraints. Section 5 contains the

technical details of the derivation of the q-Virasoro algebra and the discussion of subtleties.

We conclude in section 6 and make some general remarks about our results.

2 Virasoro constraints for hermitian matrix model

In this section we review the derivation of the Virasoro constraints in the hermitian matrix

model. In our presentation we closely follow the original work [2].

The nature of Virasoro constraints comes from the simple observation that the integral

does not change under the change of variables. Let us consider matrix integral

Zherm
N ({t}) =

∫

∏

i

dλi

∏

i 6=j

(λi − λj) e

∞∑

s=0

ts
s!

∑

i

λs
i

(6)

with the corresponding saddle-point equation
∑

s≥1

ts

s!
sλs−1

i + 2
∑

j 6=i

1

λi − λj

= 0 . (7)
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Under the shift

λi → λi + ǫnλ
n+1
i , n ≥ −1 . (8)

the effective action in (6) changes as the following:

δ

(

∑

s≥0

ts

s!

∑

i

λs
i +

1

2

∑

i 6=j

log (λi − λj)
2

)

= ǫn
∑

i

(

∑

s≥0

ts

s!
sλs+n

i +
∑

j 6=i

λn+1
i − λn+1

j

λi − λj

)

=

ǫn
∑

i

λn+1
i

(

∑

s≥0

ts

s!
sλs−1

i + 2
∑

j 6=i

1

λi − λj

)

= 0 , (9)

where in the last step we have used equations of motion (7). Hence (8) is the on-shell

symmetry of the partition function (6). At the same time we can express the invariance

of the integral under this symmetry in the form of constraints. To do this we collect the

variation linear in ǫn under the integral (6) which leads to the following expressions

〈
∞
∑

s=1

s
ts

s!

∑

i

λs−1
i 〉 , n = −1 , (10)

〈N2 +

∞
∑

s=0

s
ts

s!

∑

i

λs
i 〉 , n = 0 , (11)

〈(n+ 1)
∑

i

λn
i +

∑

i 6=j

n
∑

k=0

λk
i λ

n−k
j +

∞
∑

s=0

s
ts

s!

∑

i

λs+n
i 〉 , n ≥ 1 , (12)

where expectation values are taken with respect to the partition function (6). Last expecta-

tion value can be rewritten combing the first and second terms leading to

〈
∑

i,j

n
∑

k=0

λk
i λ

n−k
j +

∞
∑

s=0

s
ts

s!

∑

i

λs+n
i 〉 , n ≥ 1 . (13)

Expressions (10),(11) and (13) are generated by the following operators acting on Zherm
N ({t})

L−1 =
∞
∑

k=1

tk
∂

∂tk−1

, L0 =
∞
∑

k=0

ktk
∂

∂tk
+N2 ,

Ln =

n
∑

k=0

(n− k)!k!
∂2

∂tk∂tn−k

+

∞
∑

k=0

k(k + n)!

k!
tk

∂

∂tk+n

, n ≥ 1 . (14)

These are the well-known Virasoro constraints

LnZ
herm
N ({t}) = 0 , n ≥ −1 , (15)
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and they satisfy the following algebra

[Ln, Lm] = (n−m)Ln+m . (16)

Next let us consider the trigonometric version of the hermitian matrix model

Z
trig
N ({ts}) =

∫

∏

i

dλi

∏

i 6=j

sinh
(

β(λi − λj)
)

e

∞∑

s=0

ts
s!

∑

i

λs
i

, (17)

where we have introduced the deformation parameter β. The model is invariant under the

following transformations

λi → λi +
ǫn

2β
e2βnλi , n ≥ −1 . (18)

We collect the variation term linear in ǫn under the integral which leads to the following

expectation values

〈−N
∑

i

e−2βλi +
1

2β

∞
∑

s=1

∑

i

s
ts

s!
e−2βλiλs−1

i 〉 , n = −1 ,

〈
1

2β

∞
∑

s=1

∑

i

s
ts

s!
λs−1
i 〉 , n = 0 , (19)

〈
∑

i,j

n−1
∑

k=0

e2βkλie2β(n−k)λj +
1

2β

∞
∑

s=1

s
ts

s!

∑

i

e2βnλiλs−1
i 〉 , n ≥ 1 .

These terms are generated by the following operator

L−1 = −N

∞
∑

k=0

(−2β)l
∂

∂tk
−

∞
∑

k=1

∞
∑

l=0

(−2β)l−1tk
(l + k − 1)!

(k − 1)!

∂

∂tl+k−1
,

L0 =
1

2β

∞
∑

k=1

tk
∂

∂tk−1
, (20)

Ln =

n−1
∑

k=0

∞
∑

s=0

∞
∑

l=0

(2βk)s(2β(n− k))l
∂2

∂ts∂tl
+

∞
∑

k=1

∞
∑

l=0

(2β)l−1nl (l + k − 1)!

(k − 1)! l!
ts

∂

∂tl+k−1
,

which annihilates Z
trig
N ({ts}). Using the binomial expansion we can show that these differ-

ential operators satisfy the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m . (21)

Previously the Virasoro constraints for Z
trig
N ({ts}) were discussed in [9], although in a bit

less straightforward fashion.
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3 Toy model for q-Virasoro constraints

In this section we would like to reflect on the origin of Virasoro symmetry in integrals and

then generalize our observations to the case of q-Virasoro symmetry. To do this we will

consider some toy examples of matrix models. On the way we will also introduce some

basics in q-calculus and necessary combinatorial tools.

If we consider the functions in one variable x then the classical Virasoro algebra has the

following well-known representation as first order differential operators

Ln = −xn+1∂x . (22)

Alternatively there exists a different representation by the following operators

Ln = −(n + 1)xn − xn+1∂x = −∂x(x
n+1...) . (23)

Consider the integral along the real line of a function f(x)

∞
∫

−∞

dx f(x) , (24)

then, provided the function f(x) is differentiable and decays fast enough at infinity1, this

integral has the Virassoro symmetries

∞
∫

−∞

dx Lnf(x) = −

∞
∫

−∞

dx ∂x(x
n+1f(x)) = 0 . (25)

However these Virasoro symmetries cannot be converted to any PDEs since the integral

is just a number. Instead we can consider the generating function with infinitely many

parameters

Ztoy({t}) =

∫

dx xαe

∞∑

s=0

ts
s!
xs

, (26)

which encodes many different integrals. Then the condition

∫

dx Ln

(

xαe

∞∑

s=0

ts
s!
xs

)

= −

∫

dx ∂x

(

xn+1xαe

∞∑

s=0

ts
s!
xs

)

= 0 (27)

1 In order for the integral (25) to be well defined function f(x) should satisfy lim
|x|→∞

(xnf(x)) = 0 for any

positive n.
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implies the Virasoro constraints LnZ
toy({t}) = 0 where Ln is defined as the following differ-

ential operator

Ln = (n+ α + 1)n!
∂

∂tn
+

∞
∑

k=1

(k + n)!

(k − 1)!
tk

∂

∂tk+n

, n ≥ 0 , (28)

which satisfy the Virasoro algebra. Thus for the case of the hermitian matrix model (6) the

Virasoro operators (14) can be derived by inserting under the integral the following operators

Ln = −
∑

i

(

(n+ 1)λn
i + λn+1

i ∂λi

)

= −
∑

i

∂λi
(λn+1

i ...) , (29)

which by themselves generate the Virasoro algebra. The similar trick can be applied to the

trigonometric generalization (17).

Now let us introduce the basic notions of the q-calculus with q being some complex

number. The quantum number n is defined as

[n]q =
qn − 1

q − 1
(30)

and in the limits q → 1 it becomes just n. The quantum derivative is defined as the following

difference operator

Dqf(x) =
f(qx)− f(x)

(q − 1)x
. (31)

Upon the limit q → 1 the q-derivative Dq becomes the ordinary derivative. The q-derivative

satisfies the modified Leibniz rule

Dq(f(x)g(x)) = g(qx)Dqf(x) + f(x)Dqg(x) (32)

and we have

Dqx
n = [n]qx

n−1 . (33)

We can define the following q-Virasoro operator

T q
n = −Dq(x

n+1...) , (34)

which acts on the function of one variable. Alternatively we can define the operators

−xn+1Dq, but these two definitions lead to the same algebraic properties. We will con-

centrate on the definition (34) since it is the most suitable for the discussion of matrix

models. The operators (34) satisfy the following relation

qnT q
nT

q
m − qmT q

mT
q
n = ([n]q − [m]q)T

q
n+m , (35)

7



or alternatively we can rewrite this as follows

qn+1T q
nT

q
m − qm+1T q

mT
q
n = ([n + 1]q − [m+ 1]q)T

q
n+m . (36)

In checking these relations we have to use the properties (32) and (33). Equivalently the

commutator of two generators (34) can be represented as

[T q
n , T

q
m] = −

∞
∑

l=1

fl(T
q
n−lT

q
m+l − T

q
m−lT

q
n+l) , (37)

where the coefficients2 fl are chosen such that
∞
∑

l=1

flq
l = 1. There is still another relation we

can write if we allow to introduce the generators depending on q2

[T q
n , T

q
m] = q−n−m([n]q − [m]q)

(

[2]qT
q2

n+m − T
q
n+m

)

. (38)

In principle we can go on and generate the whole tower of new operators T qi

n , i = 1, 2, 3...

and they will form infinite dimensional Lie algebra. We leave aside the details and other

algebraic properties of these generators for the future work [11]. For us it is important to

remember that the q-Virasoro generators (34) satisfy the algebraic relation (38).

The crucial property of Dq is that its integral over the line (even over the half-line [0,∞))

is identically zero

∞
∫

−∞

dxDqf(x) =
1

q − 1

∞
∫

−∞

dx
f(qx)

x
−

1

q − 1

∞
∫

−∞

dx
f(x)

x
= 0 . (39)

Thus an integral over the line vanishes upon the insertion of the operators Dq(x
n+1...) under

the integral. Hence if we take the toy generating function (26) and insert the operators

Dq(x
n+1...) we get the following set of identities

∫

dx Dq

(

xn+1xα e

∞∑

s=0

ts
s!
xs

)

= 0 . (40)

The exponent can be expanded as follows

e

∞∑

s=1

ts
s!
xs

=

∞
∑

n=0

Bn(t1, t2, ..., tn)
xn

n!
, (41)

2This form of deformed Virasoro algebra was introduced in [10] with prescribed fl. One can show that

the realization (34) is a special case of their deformation [11].
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where Bn is the nth complete Bell polynomial defined as

Bn(t1, t2, ..., tn) = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1
(

n−1
1

)

t2
(

n−1
2

)

t3
(

n−1
3

)

t4
(

n−1
4

)

t5 ... ... tn

−1 t1
(

n−2
1

)

t2
(

n−2
2

)

t3
(

n−2
3

)

t4 ... ... tn−1

0 −1 t1
(

n−3
1

)

t2
(

n−3
2

)

t3 ... ... tn−2

0 0 −1 t1
(

n−4
1

)

t2 ... ... tn−3

0 0 0 −1 t1 ... ... tn−4

0 0 0 0 −1 ... ... tn−5

... ... ... ... ... ... ... ...

0 0 0 0 0 ... −1 t1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (42)

where
(

n

k

)

stands for the binomial coefficient n!
k!(n−k)!

. The complete Bell polynomials are

weighted homogeneous polynomials. For instance, the first few Bell polynomials are:

B1(t1) = t1 ,

B2(t1, t2) = t21 + t2 ,

B3(t1, t2, t3) = t31 + 3t1t2 + t3 , (43)

B4(t1, t2, t3, t4) = t41 + 6t21t2 + 4t1t3 + 3t22 + t4 ,

and we assume that B0 = 1. We will use the following properties of the Bell polynomials

Bl ((α + β)t1, ..., (α + β)tl) =

l
∑

p=0

(

l

p

)

Bl−p (αt1, ..., αtl−p)Bp (βt1, ..., βtp) , (44)

and

∂

∂tl
Bn(t1, ..., tn) =

{

0 , n < l
n!

(n−l)!l!
Bn−l(t1, ..., tn−l) , n ≥ l

, (45)

and

Bl(t̃1, ..., t̃l) =

l
∑

p=0

qp
(

l

p

)

Bp(t1, ..., tp)Bn−p(−t1, ...,−tn−p) , (46)

where t̃k = (qk − 1)tk. These properties are easily derivable from the definition (41).

After applying the definition (31) and recombining the terms we arrive to the constraints

T q
nZ

toy({t}) = 0 , n ≥ 0 , (47)
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where the operators T q
n are defined as follows

T q
n =

1

q − 1

[

∞
∑

l=0

l
∑

k=0

[n+ l − k + α+ 1]q
(l − k)!k!

Bl−k(t1, t2, ...., tl−k)Bk(−t1,−t2, ...,−tk)
∂

∂tn+l

−n!
∂

∂tn

]

. (48)

Alternatively using the property (46) we can rewrite the operator (48) as

T q
n = [n + α + 1]qn!

∂

∂tn
+

qn+α+1

q − 1

∞
∑

k=1

(k + n)!

k!
Bk(t̃1, ..., t̃k)

∂

∂tk+n

, (49)

with t̃k = (qk − 1)tk. One can observe that the operator (49) collapses to the operator (28)

in the classical limit q → 1. We have checked explicitly that the operators T q
n satisfy the

algebra (38). In checking the algebra (38) we had to use the properties (44) and (45).

4 q-Virasoro for elliptic hermitian matrix model

In this section we derive the q-Virasoro constraints for the elliptic generalisation of the matrix

model. Although any matrix integral will vanish under the insertion of Dq only in the case

of the elliptic matrix model the operator Dq talks nice to the matrix model measure.

The partition function for the 4d N= 1 U(N) gauge theory on S3 × S1

∫ N
∏

i=1

dλi

∏

i<j

(

1− ei(λi−λj)
) (

1− ei(λj−λi)
)

∞
∏

n=1

(

1− qnei(λi−λj)
)2 (

1− qnei(λj−λi)
)2

, (50)

where the integration is over the real line and q ≡ eβ with β being the circumference of S1.

Performing the change of variables eiλi = zi we arrive at the following form of the partition

function

∮ N
∏

i=1

dzi

zi

∏

i<j

θ

(

zi

zj
; q

)

θ

(

zj

zi
; q

)

, (51)

where the integration is now over the contour around the origin and θ function is defined as

in (5). Next, we can introduce the generating function

Zell
N ({t}) =

∮ N
∏

i=1

dzi

zi

∏

i<j

θ

(

zi

zj
; q

)

θ

(

zj

zi
; q

)

e

∞∑

k=0

tk
k!

N∑

i=1

zki
, (52)
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for the expectation values of supersymmetric Wilson loop in different representations. Our

goal is to show that Zell
N ({t}) is annihilated by the q-Virasoro constraints.

Following the logic from the previous section we can define the differential operator

T q
n = −

N
∑

l=1

Dzl
q (z

n+1
l . . . ) , (53)

which acts on the functions of N variables and Dzl
q is q-derivative with respect to the zl-

variable. These operators satisfy the q-Virasoro algebra (35)-(38). The insertion of these

operators under the contour integral (52) gives us identically zero. Now we have to analyse

in details how these differential operators act on the integrand. Using the properties of θ

function

θ(qz; q) = θ(z−1; q) , θ(q−1z; q) = q−1z2 θ(z−1; q) , (54)

we arrive at the following relation

N
∑

l=1

Dzl
q

(

f(zl)
∏

i<j

θ

(

zi

zj
; q

)

θ

(

zj

zi
; q

)

)

= (55)

N
∑

l=1

1

(q − 1)zl

(

f(qzl)

f(zl)

∏

j 6=l

q−1
z2j

z2l
− 1

)

f(zl)
∏

i<j

θ

(

zi

zj
; q

)

θ

(

zj

zi
; q

)

.

For the calculation of the q-derivative of the exponental factor we use the expansion (41) in

terms of the Bell polynomials Bk

exp

(

∞
∑

k=1

tk

k!
qkzki

)

=
∞
∑

k=0

1

k!
Bk(t1, . . . , tk)q

kzki =

∞
∑

k=0

∞
∑

p=0

1

k!p!
Bk(t1, . . . , tk)Bp(−t1, . . . ,−tp)q

kz
k+p
i exp

(

∞
∑

l=1

tl

l!
zli

)

=

∞
∑

k=0

1

k!
Bk

(

t̃1, . . . , t̃k
)

xk exp

(

∞
∑

l=1

tl

l!
zli

)

. (56)

Applying the formulas (55) and (56) we find that the insertion of the operator T q
n (53) under

the integral (52) is equivalent to the insertion of the following terms under the integral

1

q − 1

[

N
∏

j=1

z2j

N
∑

l=1

∞
∑

k,p=0

qn+1+k−N 1

k!p!
Bk(t1, . . . , tk)Bp(−t1, . . . ,−tp)z

k+p+n−2N
l −

N
∑

l=1

znl

]

.(57)

Thus the expectation value of these terms should be zero. Now our final goal is to generate

these terms by taking the appropriate t-derivatives of the integrand of (52). In order to do
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it we need to rewrite
N
∏

i=1

zi in terms of sums
N
∑

i=1

zki . This can be done using the Newton’s

identities

N
∏

i=1

zi =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p1 1 0 . . .

p2 p1 2 0 . . .

. . . . . . . . . . . . . . .

pN−1 pN−2 . . . . . . p1 N − 1

pN pN−1 . . . . . . p2 p1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (58)

where pk ≡
N
∑

i=1

zki . The terms
N
∑

i=1

zki can be generated by taking the t-derivatives and thus

we can introduce the following differential operator

DN =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2! ∂
∂t2

1 0 . . .

4! ∂
∂t4

2! ∂
∂t2

2 0 . . .

. . . . . . . . . . . . . . .

(2N − 2)! ∂
∂t2N−2

(2N − 4)! ∂
∂t2N−4

. . . . . . 2! ∂
∂t2

N − 1

(2N)! ∂
∂t2N

(2N − 2)! ∂
∂t2N−2

. . . . . . 4! ∂
∂t4

2! ∂
∂t2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (59)

with the property that

N
∏

j=1

z2j e

∞∑

k=0

tk
k!

N∑

i=1

zki
= DN

(

e

∞∑

k=0

tk
k!

N∑

i=1

zki

)

. (60)

Combining all together we obtain the following q-Virasoro operator

T q
n =

1

q − 1

[

∞
∑

k,p=0

qn+1+k−N (k + p+ n− 2N)!

k!p!
Bk(t1, . . . , tk)Bp(−t1, . . . ,−tp)× (61)

DN

∂

∂tk+p+n−2N
− n!

∂

∂tn

]

, (62)

which annihilates the generating function Zell
N ({t}). Using the property (46) we can rewrite

the operator (62) as follows

T q
n =

1

q − 1

[

qn+1−N

∞
∑

l=0

(l + n− 2N)!

l!
Bl(t̃1, ..., t̃l)DN

∂

∂tl+n−2N

− n!
∂

∂tn

]

. (63)

We see that generically the operators T q
n are higher order differential operators and action of

these operators on Zell
N ({t}) generates the insertion of the terms (57) under the integral. It

is crucial to stress that there are many different higher order operators which will generate

12



exactly the same insertion (57). This fact complicates the calculation of the algebra and we

elaborate more on this point later. In the next section we will show that the operators (63)

satisfy the following algebra

[T q
n , T

q
m] = q−n−m([n]q − [m]q)

(

[2]qT
q2

n+m − T
q
n+m

)

, (64)

where the operators T q2

n are defined below in (68). The operators T q2

n annihilate Zell
N ({t}).

Indeed if we continue to calculate the algebra we will get the whole tower of operators T qj

n ,

j = 1, 2, 3, ... which annihilate Zell
N ({t}).

In order to define explicitly the operators T q2

n we have to insert under the integral (52)

the following difference operator

T q2

n = −
N
∑

l=1

D
zl
q2
(zn+1

l . . . ) . (65)

Using the following properties of the θ function

θ
(

q2z; q
)

= −q−1z−1θ
(

z−1; q
)

, θ
(

q−2z; q
)

= −q−3z3θ
(

z−1; q
)

, (66)

we obtain following Ward identities
〈

1

q2 − 1

[

N
∏

j=1

z4j

N
∑

l=1

∞
∑

p=0

q2n+4−4N 1

p!
Bp(t̂1, . . . , t̂p)z

p+n−4N
l −

N
∑

l=1

znl

]〉

= 0 , (67)

where by 〈...〉 we mean the insertion of this expression under the integral (52). These Ward

identities can be expressed in the form T q2

n Zell
N ({t}) = 0, where the differential operator T q2

n

is given by

T q2

n =
1

q2 − 1

[

q2n+4−4N
∞
∑

l=0

(l + n− 4N)!

l!
Bl(t̂1, ..., t̂l)D̃N

∂

∂tl+n−4N

− n!
∂

∂tn

]

. (68)

Here D̃N is the differential operator defined as

D̃N =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4! ∂
∂t4

1 0 . . .

8! ∂
∂t8

4! ∂
∂t4

2 0 . . .

. . . . . . . . . . . . . . .

(4N − 4)! ∂
∂t4N−4

(4N − 8)! ∂
∂t4N−8

. . . . . . 4! ∂
∂t4

N − 1

(4N)! ∂
∂t4N

(4N − 4)! ∂
∂t4N−4

. . . . . . 8! ∂
∂t8

4! ∂
∂t4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (69)

Again we see that the operators T q2

n are higher order differential operators. Analogously we

can define the operators T qj

n .

13



In the expression (62) there is a problem since the operator T q
n is defined only for the case

n ≥ 2N . Similar problems exist for the operator T q2

n which is defined for the case n ≥ 4N . To

resolve this problem we can insert the different q-Virasoro operator −
N
∑

l=1

Dzl
q (z

2N(n+1)+1
l . . . )

under the integral. This leads to the following differential operator

T̃ q
n =

∞
∑

p≥0

q2N(n+1)+1−N (p+ 2Nn)!

p!
Bk(t̃)DN

∂

∂tp+2Nn

− (2Nn + 2N)!
∂

∂t2N(n+1)

, (70)

so that the operator is well defined for any n ≥ −1. The algebra can be calculated in

completely analogous way.

5 Calculation of the algebra

In this section we derive the algebra (64) for the operators T q
n defined in (63) and the

operators T q2

n defined in (68). The operators T q
n and T q2

n are higher order differential operators

which generate concrete insertions under the integral. However different differential operators

can generate exactly the same insertions under the integral. Thus in principle we can have

different representations for T q
n and T q2

n as higher order differential operators in t’s. We have

to keep in mind this feature of these operators.

Our goal is to check the relation (64) for the operators (63). For this we calculate the

commutator [T q
n , T

q
m]. In order to calculate it we need to know the action of the operator

DN on the complete Bell polynomials. One can easily derive the following relation

DN

(

e

∞∑

s=1

ts
s!
xs

)

= 0 , (71)

which upon the expansion (41) implies that the operator DN annihilates the Bell polynomials

DNBk(t1, . . . , tk) = 0 . (72)

Next we calculate the following relation

DN

(

e

∞∑

s=1

t̃s
s!
xs

)

= (−1)N+1(q2 − 1)x2Ne

∞∑

s=1

t̃s
s!
xs

, (73)

where we recall that t̃s = (qs−1)ts. Expanding this formula in x we get the following action

of DN

DNBk(t̃1, . . . , t̃k) =

{

0 , k < 2N

(−1)N+1(q2 − 1) k!
(k−2N)!

Bk−2N(t̃1, . . . , t̃k−2N) , k ≥ 2N
(74)
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Finally we need the following relation

Bp(t̂1, . . . , t̂p) =
∑

k≤p

p!

k!(p− k)!
qkBk(t̃1, . . . , t̃k)Bp(t̃1, . . . , t̃p) , (75)

where t̂k ≡ (qk + 1)t̃k = (q2k − 1)tk. This relation follows directly from the expansion

(41). Using these formulas we can straightforwardly calculate [T q
n , T

q
m]. However for the case

of arbitrary number N of eigenvalues this problem is complicated and the corresponding

expressions are enormous. Thus we will concentrate on the simplest cases of N = 2 and

N = 3.

Using the above formulas it is straightforward to evaluate commutator of T q
n operators

for the case N = 2

[T q
n , T

q
m] =

q−n−m

(q − 1)2
([n]q − [m]q)

[

q2n+2m−6
∑

p≥0

1

p!
Bp(t̂)D2

(

D2(p+ n+m− 8)!
∂

∂tp+n+m−8
−

(q2 − 1)(p+ n +m− 4)!
∂

∂tp+n+m−4

+ (q2 − 1)2!(p+ n +m− 6)!
∂2

∂t2∂tp+n+m−6

)

−

qn+m−1
∑

p≥0

(p+ n+m− 4)!

p!
Bp(t̃)D2

∂

∂tp+n+m−4

]

. (76)

For the case of N = 3 we obtain

[T q
n , T

q
m] =

q−n−m

(q − 1)2
([n]q − [m]q)

[

q2n+2m−10
∑

p≥0

1

p!
Bp(t̂)D3

(

D3(p+ n+m− 12)!
∂

∂tp+n+m−12
+

(q2 − 1)(p+ n +m− 6)!
∂

∂tp+n+m−6

−

1

2
(q2 − 1)

(

4!
∂

∂t4
− (2!)2

∂2

∂t22

)

(p+ n+m− 10)!
∂

∂tp+n+m−10
−

(q2 − 1)2!(p+ n+m− 8)!
∂2

∂t2∂tp+n+m−8

)

−

qn+m−2
∑

p≥0

(p+ n+m− 6)!

p!
Bp(t̃)D3

∂

∂tp+n+m−6

]

. (77)

The last terms in both (76) and (77) contributes to T
q
n+m operator in (64). However

to completely match these expressions with the commutation relations (64) we need the
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explicit form (68) of the operator T q2

n . Notice that D̃N ∼ (DN )
2, where ∼ means that these

two operators are equivalent upon the action on the partition function (52). As we can

see the expressions in (76) and (77) are complicated and do not match the operator (68).

However if we act with the right hand side of (76) on the partition function we obtain the

familiar terms. This action can be obtained directly by the substitution

∂

∂ta
→ (xa

1 + xa
2) , D → x2

1x
2
2 . (78)

Then the operators written in the first two lines of (76) result in the following expectation

value:

([n]q − [m]q)

(q − 1)
〈qn+m−6

∑

p≥0

1

p!
Bp(t̂)x

2
1x

2
2

(

(xa−8
1 + xa−8

2 )x2
1x

2
2 − (q2 − 1)(xa−4

1 + xa−4
2 )+

(q2 − 1)(xa−6
1 + xa−6

2 )(x2
1 + x2

2)
)

〉 =
([n]q − [m]q)

(q − 1)
〈qn+m−4

∑

p≥0

1

p!
Bp(t̂)x

4
1x

4
2(x

a−8
1 + xa−8

2 )〉 =

([n]q − [m]q)

[

[2]qT
q2

n+m + n!
∂

∂tn

]

Z , (79)

where for shortness we have introduced a = p+n+m. Combining these terms with the last

term in (76)

qn+m−1
∑

p≥0

(p+ n +m− 4)!

p!
Bp(t̃)D2

∂

∂tp+n+m−4

= T
q
n+m + n!

∂

∂tn
(80)

we can arrive to the desired commutation relation (64). One can perform similar calculation

for the case N = 3 by making the substitution

∂

∂ta
→ (xa

1 + xa
2 + xa

3) , D → x2
1x

2
2x

2
3 . (81)

After some simple algebra one can show that the commutation relation (77) is compatible

with (64) once we act on the partition function (52).

We have obtained the desired algebra (64) but on the way we had to perform some

additional manipulations. Let us provide the general explanation for what we did. For this

purpose we consider general matrix model of the form

Z({t}) =

∫

dNx f(x1, ..., xN) e

∞∑

k=0

tk
k!

N∑

i=1

xk
i

, (82)
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where the t’s are parameters (either finite or infinite number of them). We are interested

to discuss the symmetries of this integral, namely the differential operators D in t’s which

annihilate Z({t})

DZ({t}) =

∫

dNx f(x1, ..., xN) σD(x1, ..., xN) e

∞∑

k=0

tk
k!

N∑

i=1

xk
i

= 0 . (83)

The operator D upon acting on the exponent generates the function σD. However there is

no unique correspondence between D and the function σD. Two different operators D and

D̃ generate the same function σD if

(D − D̃) e

∞∑

k=0

tk
k!

N∑

i=1

xk
i

= 0 . (84)

The operators which annihilate the exponent form an ideal among the differential operators.

When we study the algebra of the symmetries we have to quotient by this ideal. For the

symmetries D1 and D2 we have

[D1, D2]Z({t}) = 0 . (85)

All the symmetries will form a Lie algebra which is the Lie algebra of the operators an-

nihilating Z modulo the ideal discussed above. In calculation of the algebra (64) we had

to use some identification (84). Notice that this is a generic feature of the matrix models

and even the simple Virasoro operator (14) may have a different representations upon these

identifications.

6 Summary

The Virasoro constrains are important for the understanding of the hermitian matrix model.

In this work we looked at the elliptic generalization of the hermitian matrix model and we

have derived the q-Virasoro constraints for this model. Our deformation of the Virasoro

algebra is based on the realization in terms of q-derivatives within the q-calculus and this

deformation is a special case of a more general elliptic deformation of the Virasoro algebra.

The deformation of Virasoro algebras has been first discussed by Curtright and Zachos in

[12] (see also [13] for further explanation and the relevant references). Later the deformation

of the Virasoro algebra was introduced in [10, 14, 15] in a different context. There were

numerous works on the study of these deformations including different physical realizations

of q-Virasoro algebra ([16, 17, 18, 19, 20, 21, 22, 25, 26]). However the realization of the

general elliptic deformation of Virasoro algebra in terms of concrete difference operators
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is still missing. Moreover, many algebraic aspects remain a mystery. For example, the

realization of the algebra in (38) was forced upon us by the matrix model and came as total

surprise.

The trigonometric and elliptic deformations of the Virasoro algebra play a crucial role

in the higher dimensional gauge theories, as an example see the recent papers [23] and [24]

on the role of the elliptic deformation. What we have observed in this paper is just a tip of

the iceberg. We think that the q-Virasoro constraints are a generic feature of the partition

functions on S3×S1 for different gauge theories. We believe that the elliptic deformation of

the Virasoro algebra should appear when one tries to generalise the present analysis to a wider

class of theories. However in order to make a further progress we need to understand better

the algebraic property of the deformed Virasoro algebra and to find the realization in terms

of the concrete difference operators. We plan to answer these questions in a forthcoming

work [11].
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